$\mathrm{Hz}, 1-\mathrm{H}$), 2.30 (dd, $J=3.8,17.2 \mathrm{~Hz}, 1-\mathrm{H}$), 1.88 (m, 1-H), 1.03 (d, $J=6.8 \mathrm{~Hz}, 3-\mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 173.47,166.96,138.40,128.33,127.79,127.60,90.04,84.64,77.24$, $75.00,55.98,29.91,28.01,19.40,18.57$. Capillary GC analysis indicated a purity of 99%.
6-[1-[(tert-Butyldimethylsilyl)oxy]-2-methylpropyl]-5,6-dihydro-4-methoxy-2H-pyran-2-one (18a, threo): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.14(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1-\mathrm{H}), 4.30$ (ddd, $J=3.8,5.8,12.7$ $\mathrm{Hz}, 1-\mathrm{H}$), 3.75 ($\mathrm{s}, 3-\mathrm{H}$), 3.63 ($\mathrm{m}, J=3.8,5.8 \mathrm{~Hz}, 1-\mathrm{H}$), 2.55 (ddd, $J=2.0,12.7,17 \mathrm{~Hz}, 1-\mathrm{H}$), 2.23 (dd, $J=3.8,17 \mathrm{~Hz}, 1-\mathrm{H}$), 1.82 (m, $1-\mathrm{H}), 1.02$ (d, $J=6.8 \mathrm{~Hz}, 3-\mathrm{H}$), 0.92 (s, $9-\mathrm{H}$), 0.89 (d (partial overlap), $3-\mathrm{H}$), 0.14 (s, 3-H), 0.1 (s, 3-H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) δ $172.70,139.66,90.48,78.51,77.54,68.82,56.03,29.96,29.32,26.11$, $16.53,-3.76$. Capillary GC analysis indicated a purity of 98%.

6-[1-[(tert-Butyldimethylsilyl)oxy]-2-methylpropyl]-5,6-dihydro-4-methoxy-2H-pyran-2-one (18b, erythro): mass calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+1), 315.1991$; exact mass (CI, $\mathrm{M}+1$) 315.1995; MS ($\left.\mathrm{NH}_{3} / \mathrm{CI}\right) 257,157,139,74,58 ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 5.12$ (d, $J=1.6 \mathrm{~Hz}, 1-\mathrm{H}$), 4.41 (dt, $J=3.4,12.2 \mathrm{~Hz}, 1-\mathrm{H}$), 3.75 ($\mathrm{s}, 3-\mathrm{H}$), 3.67 (dd, $J=3.4,6.8 \mathrm{~Hz}, 1-\mathrm{H}$), 2.81 (ddd, $J=1.6,12.2$, $17 \mathrm{~Hz}, 1-\mathrm{H}$), 2.20 (dd, $J=3.4,17 \mathrm{~Hz}, 1-\mathrm{H}$), 1.72 (m, 1-H), 0.97 (d, $J=6.8 \mathrm{~Hz}, 3-\mathrm{H}$), 0.91 (d (partial overlap), $3-\mathrm{H}$), $0.90(\mathrm{~s}, 9-\mathrm{H})$, 0.11 (s, 6-H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 178.8,173.3,90.01,77.85,77.24$, $55.96,31.27,27.44,26.10,19.17,18.99,-3.69,-4.3$. Capillary GC analysis indicated a purity of 97%.

Methyl 6-(benzyloxy)-3-methoxy-7-methyl-5-hydroxy-2octenoate (20): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.30-7.50(\mathrm{~m}, 5-\mathrm{H}), 5.14$ (s, $1-\mathrm{H}), 4.69(\mathrm{~s}, 2-\mathrm{H}), 4.05(\mathrm{~m}, 1-\mathrm{H}), 3.68(\mathrm{~s}, 3-\mathrm{H}), 3.66(\mathrm{~s}, 3-\mathrm{H}), 3.25$ (dd, $J=9.5,13.5 \mathrm{~Hz}, 1-\mathrm{H}$), 3.09 (dd, $J=3.4,6.35 \mathrm{~Hz}, 1-\mathrm{H}$), 2.83 ($\mathrm{s}, 1-\mathrm{H}$), 2.79 (dd, $J=3.9,9.5 \mathrm{~Hz}, 1-\mathrm{H}), 2.05(\mathrm{~m}, 1-\mathrm{H}), 1.02$ (d, $6-\mathrm{H})$. Capillary GC indicated a purity of 98%.

6-[1-(Benzyloxy)-2,2-dimethylpropyl]-5,6-dihydro-4-methoxy-2H-pyran-2-one (19a, threo): mass calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}$ (M+1), 305.1753; exact mass (CI, M+1) 305.1745; MS ($\mathrm{NH}_{3} / \mathrm{CI}$) 177, 157, 127, 91, 83, 49; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~m}, 5-\mathrm{H}), 5.10$ (d, $J=1.47 \mathrm{~Hz}, 1-\mathrm{H}), 4.61-4.71(\mathrm{~m}, 3-\mathrm{H}), 3.69(\mathrm{~s}, 3-\mathrm{H}), 3.09(\mathrm{~d}$, $J=2.44 \mathrm{~Hz}, 1-\mathrm{H}), 2.83$ (ddd, $J=1.46,11.7,16.6 \mathrm{~Hz}, 1-\mathrm{H}$), 2.23 ($\mathrm{dd}, J=3.9,16.6 \mathrm{~Hz}, 1-\mathrm{H}$), $1.11(\mathrm{~s}, 9-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.8$, $167,138.3,128.5,128.3,127.6,127.3,90.2,87.7,76.1,55.9,36.4$, 31.1, 27.5. Capillary GC analysis indicated a purity of 100%.

6-[1-(Benzyloxy)-2,2-dimethylpropyl]-5,6-dihydro-4-methoxy-2H-pyran-2-one (19b, erythro): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.34(\mathrm{~s}, 5-\mathrm{H}), 5.14(\mathrm{~d}, J=1.46 \mathrm{~Hz}, 1-\mathrm{H}), 4.88(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $1-\mathrm{H}$), 4.62 (d (overlap), $J=11.7 \mathrm{~Hz}, 1-\mathrm{H}$), $4.61-4.63$ (ddd (overlap), $J=1.95,3.91,12.2 \mathrm{~Hz}, 1-\mathrm{H}), 3.74(\mathrm{~s}, 3-\mathrm{H}), 3.53(\mathrm{~d}, J=1.96 \mathrm{~Hz}$, $1-\mathrm{H}$), 2.95 (ddd, $J=1.47,12.21,17.6 \mathrm{~Hz}, 1-\mathrm{H}), 2.30$ (dd, $J=3.91$, $17.6 \mathrm{~Hz}, 1-\mathrm{H}), 1.01(\mathrm{~s}, 9-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 173.9,138.54$, 128.3, 127.4, 89.89, 87.58, 75.30, 56.02, 35.16, 29.20, 26.95. Capillary GC analysis indicated a purity of 100%.

Acknowledgment. Financial support was provided by the University of California, Riverside Chancellor's Patent Fund, the Committe on Research, and the National Institutes of Health (NIH), grant GM24517. The assistance of Rich Kondrat in providing mass spectra and Jim O'Brien in preparation of allylic alcohols is gratefully acknowledged.

Supplementary Material Available: NMR (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) spectral data for compounds $4 \mathrm{a},{ }^{26} \mathbf{4 b}, 4 \mathbf{c},{ }^{28,20}, 4 \mathbf{d}^{26} 5 a-d, 8 a,{ }^{59} 8 h^{5 b, 8}$ 11-13, and 17-19 (11 pages). Ordering information is given on any current masthead page.

Asymmetric Diels-Alder Reactions with γ-Functionalized α, β-Unsaturated Chiral \boldsymbol{N}-Acyloxazolidinones: Synthesis of (+)-S-145

Michael J. Martinelli
Process Research \& Development Division, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285

Received February 5, 1990
An extension of the asymmetric Diels-Alder cycloaddition with chiral γ-substituted, α, β-unsaturated imides is described. The application of these results to the synthesis of the potent TxA_{2} receptor antagonist (+)-S-145 was successfully achieved in a practical manner.

Thromboxane A2 (TxA_{2}) receptor antagonists are an important class of pharmacological tools and are being studied clinically for the treatment of diseases such as asthma, angina pectoris, thrombosis, and other circulatory disorders. ${ }^{1}$ A number of reports that discuss TxA_{2} receptor antagonists have appeared recently. ${ }^{1,2}$ In most cases, replacement of one or both of the ring substituted oxygen atoms of TxA_{2}, while maintaining the bicyclic steric nature of the ring system, has resulted in the discovery of very potent compounds with higher stability than TxA_{2} itself (below). Moreover, modification of the α and ω side chains has also been shown to modulate the potency and intrinsic efficacy of these compounds at the TxA_{2} receptor. The norbornyl nucleus has served as a pivotal framework

[^0]on which to append various α and/or ω moieties, and S-145 is a potent norbornyl-derived TxA_{2} receptor antagonist. ${ }^{1 \mathrm{a}}$ We desired access to an optically active, substituted norbornyl ring which would allow flexibility for functionalization of the side chains in order to obtain the desired biological activity. As part of a collaboration with chemists at Shionogi and Company, we were interested in developing synthetic methodology for the preparation of highly substituted, optically active norbornane derivatives.

 (+)-5-145

An attractive entry into the optically active norbornyl series was obviously the enantioselective Diels-Alder cycloaddition reaction, a subject which has recently received much attention. ${ }^{3}$ Lewis acids have been used to increase dienophile reactivity, thereby allowing the cycloaddition to occur at lower temperatures with higher endo selectivity. ${ }^{4}$ Dienophiles containing a chiral auxiliary form complexes with a variety of Lewis acids and undergo DielsAlder cycloadditions with very high asymmetric induction and chemical yields. ${ }^{5}$ Alternatively, Lewis acids with chiral ligands have been effective mediators of cycloaddition as well, both as stoichiometric reagents ${ }^{6}$ and as catalysts. ${ }^{7}$ We were especially enthusiastic about the Evans version of the asymmetric Diels-Alder reaction (eq 1). ${ }^{8}$ A chiral oxazolidinone, derived from an amino acid,

was coupled with crotonyl chloride to afford an optically active imide dienophile. The dienophile was then allowed to react with a variety of dienes and $\mathrm{Et}_{2} \mathrm{AlCl}$ at low temperature to afford adducts with high diastereoselectivities ($>90 \%$ de) and chemical yields (85%). The oxazolidinones were later removed under a variety of conditions. ${ }^{8,9}$ We were particularly interested in extending these results to terminus-substituted crotyl dienophiles and their reaction with cyclopentadiene, ultimately followed by elaboration to the potent TxA_{2} receptor antagonist (+)-S-145 (above).

Results and Discussion

At the outset, we wanted to determine the most desirable chiral oxazolidinone auxiliary to employ in our studies. Several chiral oxazolidinones (X_{C}) have been used; for example, the (S)-valinol-derived (X_{V}), $(4 R, 5 S)$-nor-ephedrine-derived $\left(\mathrm{X}_{\mathrm{N}}\right),(S)$-phenylalaninol-derived (X_{P}), cyclohexyl-derived ($\mathrm{X}_{\mathrm{PPG}}$), and the cyclohexylmethyl-derived ($\mathrm{X}_{\mathrm{PPA}}$) were compared. ${ }^{8}$ That comparison concluded that the (S)-phenylalaninol-derived (X_{P}) oxazolidinone was

[^1]superior to the other oxazolidinones $\left(\mathrm{X}_{\mathrm{V}}, \mathrm{X}_{\mathrm{N}}\right)$ as an auxiliary in the diastereoselective cycloaddition reaction, and furthermore, X_{P} offered a higher degree of crystallinity and possessed a chromophore for TLC/HPLC analysis which does not interfere with the ${ }^{1} \mathrm{H}$ NMR upfield resonances. The (S)-phenylalaninol-derived (X_{P}) oxazolidinone was commercially available or readily prepared in two steps on a mole scale. ${ }^{9}$

However, we had ready access to the (S)-phenyl-glycinol-derived (X_{G}) oxazolidinone from related work, and although it has not been reported for use as an auxiliary in the cycloaddition with cyclopentadiene, we needed to evaluate its utility. The X_{G} oxazolidinone was coupled with crotonyl chloride to afford the dienophile 3 in 93% isolated yield. The dienophile 3 was then reacted with $\mathrm{Et}_{2} \mathrm{AlCl}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$, followed by the addition of freshly distilled cyclopentadiene. Alternatively, the im-ide-cyclopentadiene admixture could be treated with $\mathrm{Et}_{2} \mathrm{AlCl}$ at $-78^{\circ} \mathrm{C}$ as well. After 30 minutes at $-78^{\circ} \mathrm{C}$, workup provided identical results irrespective of the order of addition. The X_{G}-based dienophile 3 gave very high endo selectivity, but surprisingly, gave no asymmetric induction with cyclopentadiene as the diene component. The 1:1 mixture of diastereomeric adducts 4 was treated with LiOOH in aqueous THF^{10} to cleave the chiral oxazolidinone. This yielded a racemic mixture of the acid, which displayed a homogeneous NMR spectrum, as expected, since the endo and exo isomers could be easily distinguished by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Evans and coworkers have advanced the notion of " π-solvation" in the transition state to rationalize similar stereochemical results (below). ${ }^{8,11}$ On the basis of these results and the X_{C} comparison described above, the X_{P} auxiliary was employed in all subsequent cycloadditions outlined below.

We next turned our attention to terminus-substituted crotyl imide dienophiles. It was not clear at the outset what effect a terminal heteroatom or halogen would have on the cycloaddition, both with respect to competing chelation, elimination, or reaction with the Lewis acid itself. In most cases, the acid or ester was commercially available. We employed two complementary protocols for the construction of the α, β-unsaturated imides. In the first procedure, the α, β-unsaturated acid was converted to the acid chloride and purified by vacuum distillation, followed by reaction with the lithium salt of the oxazolidinone ($\mathrm{X}_{\mathrm{P}} \mathrm{Li}$) to obtain the imide. For cases where the α, β-unsaturated acid chloride formation proved to be unachievable (due to polymerization/decomposition), the acid was converted to its pivaloyl mixed anhydride in situ, followed by reaction with $\mathrm{X}_{\mathrm{P}} \mathrm{Li}$. This procedure offered the advantage of in situ activation, eliminating one isolation step from the scheme. The imides could be purified by crystallization or chromatography. Table I outlines the imides that were prepared for this study.

The Diels-Alder cycloadditions were conducted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ with $\mathrm{Et}_{2} \mathrm{AlCl}$ (1.4 molar equiv) and

[^2]Table I. Product Distribution from the Asymmetric Diels-Alder Reactions of γ-Substituted α, β-Unsaturated Imides with Cyclopentadiene

		$\rightarrow 1$					 II	
entry	dienophile	method ${ }^{\text {a }}$	adduct	method ${ }^{\text {b }}$	\% yield ${ }^{\text {c }}$	temp, ${ }^{\circ} \mathrm{C}$	$\sum_{\text {endo }} / \sum_{\text {exi }}{ }^{\text {d }}$	I/II endo ds
A	1, $\mathrm{R}=\mathrm{CH}_{3}$	Cl	2	E_{1} or C_{1}	83	-100	55:1	97:3
B	3, $\mathrm{R}=\mathrm{CH}_{3}\left(\mathrm{X}_{\mathrm{G}}\right)$	Cl	4	E_{1} or C_{1}	93	-78	-	1:1
C	5, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Pv	6	E_{1} or C_{1}	95	-78	46:1	96:4
D	7, $\mathrm{R}=\mathrm{CH}=\mathrm{CHCH}_{3}(\mathrm{t})$	Cl	8	C_{1}	75	-45	45:1	99:1
E	9, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OBn}$	Pv	10	E_{1}	92	-78	36:1	97:3
F	$11, \mathrm{R}=\mathrm{CH}_{2} \mathrm{OBn}$	Pv	12	E_{1}	86	-78	35:1	98:2
G	13, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Br}$	NBS	14	C_{1}	91	-78	29:1	99:1
H	15, $\mathrm{R}=2$-furanyl	Pv	16	E_{1}	81	-40	37:1	$95: 5$
I	17, $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$	Cl	18	C_{1}	89	-78	6.4:1	95:5
J	$19, \mathrm{R}=\mathrm{COX}_{P}$	Cl	20	C_{1}	83	-78	1:0	99:1
K	19, $\mathrm{R}=\mathrm{COX}_{\mathrm{P}}$	Cl	20	NE	99	24	1:0	2:1

${ }^{a}$ Method for preparation of the α, β-unsaturated imide (see Experimental Section). ${ }^{b}$ Mode of addition in Diels-Alder cycloaddition (NE $=$ no $\mathrm{Et}_{2} \mathrm{AlCl}$ added). ${ }^{c}$ Yield of isolated material with indicated diastereomeric purity. ${ }^{d}$ Ratios determined by HPLC.
freshly distilled cyclopentadiene ($3-6$ equiv) for 2 h under N_{2}. The order of addition was critical in some cases due to the nature of the dienophile: $\mathrm{Et}_{2} \mathrm{AlCl}$ first, cyclopentadiene second (E_{1}); or cyclopentadiene first, $\mathrm{Et}_{2} \mathrm{AlCl}$ second $\left(\mathrm{C}_{1}\right)$. For example, with very electron deficient dienophiles (e.g., $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$ (17), $\mathrm{COX}_{\mathrm{P}}$ (19)), the $\mathrm{Et}_{2} \mathrm{AlCl}$ formed an adduct with the olefin in the absence of the diene partner. Therefore, cyclopentadiene needed to be present prior to the addition of the Lewis acid. However, for more electron rich dienophiles, the cycloaddition was extremely slow at $-78^{\circ} \mathrm{C}$ and required warming to $-45^{\circ} \mathrm{C}$ for complete reaction (e.g., $\mathrm{R}=\mathrm{CH}=\mathrm{CHCH}_{3}(7)$, furan (15), Ph^{8}). The other examples were insensitive to the order of addition, and the results are summarized in Table I. The diastereoselectivity was determined by HPLC with comparison of authentic samples of the four possible diastereomers, prepared by nonselective cycloaddition of the α, β-unsaturated acid with ultimate conversion to the imide via the mixed anhydride method. The observed endo diastereoselectivities were in complete agreement with the literature precedent, ${ }^{8}$ typically in excess of $97: 3$. The absolute stereochemical assignment relies in part upon the analysis of Evans and co-workers. ${ }^{8}$ Nonetheless, this assignment was confirmed by the conversion of adduct 10 to the TxA_{2} receptor antagonist (+)-S-145, a compound of known configuration (vide infra).

For practical considerations, it was interesting to determine the relationship between diastereoselectivity and temperature, especially in terms of scale-up latitude. Thus, the temperature dependence of the $\mathrm{Et}_{2} \mathrm{AlCl}$-mediated reaction of imide 9 with cyclopentadiene was investigated. As expected, lower temperatures gave higher selectivity, but solubility became an issue at temperatures below - 85 ${ }^{\circ} \mathrm{C}$, although addition of the Lewis acid caused dissolution. The endo diastereoselectivity was less affected by temperatures above $-70^{\circ} \mathrm{C}$, as compared to the endo/exo selectivity. These data are presented in Table II. The reactive nature of α, β-unsaturated imides has previously been noted, ${ }^{8}$ and this reactivity was especially enhanced with Lewis acids. It was interesting to note that the bisimide 19 underwent rapid cycloaddition with cyclopentadiene at room temperature without $\mathrm{Et}_{2} \mathrm{AlCl}$ (Table I , entry K).

The fact that this Lewis acid mediated cycloaddition could be accomplished with potentially sensitive dieno-

Table II. Temperature Effect on Selectivity in Asymmetric Diels-Alder Cycloaddition for Imide $9 \rightarrow$ Adduct 10

temp, ${ }^{\circ} \mathrm{C}$	end ds	$\boldsymbol{\Sigma}_{\text {endo }} / \boldsymbol{\Sigma}_{\text {exo }}$
0	$92.0: 8.0$	$8: 1$
-45	$95.0: 5.0$	$17: 1$
-70	$96.0: 4.0$	28.1
-85	$96.5: 3.5$	$36: 1$
-100	$97.0: 3.0$	$65: 1$

philes, i.e. those bearing halogens or heteroatoms, indicated the mild nature of these conditions. The only side products observed were those resulting from conjugate addition of the Lewis acid to the α, β-unsaturated imide, ${ }^{12}$ as in the case where $R=\mathrm{CO}_{2} \mathrm{Et}$ (17), $\mathrm{COX}_{\mathrm{P}}$ (19). This problem could be overcome by recognizing the importance of the order of addition. Even reactive olefins such as the bromocrotonate imide 13 , which was unstable to prolonged storage at room temperature, were well-behaved in the cycloaddition described above.

Application to (+)-S-145. The retrosynthetic analysis of (+)-S-145 immediately suggested a Wittig transform ${ }^{1,13}$ to the requisite aldehyde, easily derived from a protected alcohol moiety. The C-1 carbonyl to nitrogen transposition could be envisioned through a Curtius or Hoffman type rearrangement. Standard protection-deprotection and oxidation-reduction operations at various points in the scheme would result in a very facile assembly of the title compound (below). In actual practice, the synthesis used very inexpensive and commercially available starting materials and is described below.

[^3]
Scheme I

1,3-Propanediol (21) was monobenzylated by a one-pot, two-step sequence as follows. Benzylidene acetal formation occurred in toluene with azeotropic removal of water (Scheme I). The cooled solution of the acetal was then reduced with DIBAL-H overnight at room temperature. The excess reducing agent was quenched with methanol/ water, and the aluminum salts which precipitated were filtered. Concentration of the filtrate allowed very simple access to molar quantities of 3-(benzyloxy)-1-propanol (22). ${ }^{14}$ The Ireland version ${ }^{15}$ of the Swern-Wittig reaction sequence was employed next. Namely, usual Swern oxidation ($\mathrm{DMSO} /(\mathrm{COCl})_{2} / \mathrm{Et}_{3} \mathrm{~N}$) generated the β-alkoxy aldehyde, which, without isolation, was reacted directly with the methyl (triphenylphosphoranylidene)acetate ${ }^{16}$ ($-78^{\circ} \mathrm{C}$ to room temperature) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After aqueous workup, trituration with hexanes and filtration removed the triphenylphosphine oxide from the desired α, β-unsaturated ester 23. The E / Z ratio was determined to be $98: 2$, although the geometry of the olefin does not affect the stereochemistry of the Diels-Alder reaction. ${ }^{17}$ Hydrolysis of the ester 23 with NaOH in aqueous THF provided the acid 24 . This strategy allowed a very rapid assembly of the requisite dienophile chain, with an 88% overall yield from 1,3-propanediol (Scheme I). This scheme was also applied to the synthesis of 11.

The acid 24 was then coupled to the oxazolidinone X_{P} through the intermediacy of the pivaloyl mixed anhydride in 88%. The mixed anhydride protocol was found to be superior to acid chloride procedure in the case of 24. Diels-Alder cycloaddition as described previously proceeded smoothly at $-78^{\circ} \mathrm{C}$. After 2 h , careful addition of the reaction mixture to ice-cold 1 N HCl allowed a very controlled evolution of ethane, and the adduct 10 was isolated by extraction into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Although the diastereoselectivity for this reaction was high, one means for improvement of the purity of these isomeric adducts might have been recrystallization, since they are diastereomeric. We were unable to induce the Diels-Alder adduct 10 to crystallize and therefore could not take advantage of this approach. Direct hydrolysis of the imide 10 with LiOOH^{10} was accompanied by a side reaction at the olefinic center,

[^4]in addition to reaction at the desired imide carbonyl. Although LiOOH has been previously used in the hydrolysis of imide substrates containing unsaturation, ${ }^{10}$ the bicyclo[2.2.1]heptene nucleus has a highly reactive, strained double bond moiety. The double bond was therefore reduced over catalytic PtO_{2} under an atmosphere of hydrogen to yield the saturated bicycle 25 (Scheme I). Once again, the lack of crystallinity of this compound precluded improvement of the optical purity at this point.

Cleavage of the auxiliary proceeded smoothly with the saturated substrate 25 , and the acid 26 could be purified by extraction into aqueous base with organic extraction for retrieval of the auxiliary. Adjustment of the pH and extractive isolation gave the acid 26 in high yield (88%). Crystallization of the auxiliary from the original organic extract afforded an 85% recovery, easily accomplished on a large scale ($>100 \mathrm{~g}$). We have established that the optical purity of this recovered oxazolidinone (X_{P}) was unchanged, and the auxiliary was recycled successfully. Thus, the chiral oxazolidinone was appended to the dienophile 24 in a single operation, the Diels-Alder reaction was completed, and the auxiliary was removed and recycled.

Once again, the mixed anhydride technology was employed for the activation of an acid moiety. Thus, reaction of the acid 26 with ethyl chloroformate and $\mathrm{Et}_{3} \mathrm{~N}$ in wet acetone, followed by the addition of aqueous sodium azide, ${ }^{18}$ afforded the acyl azide. After aqueous workup and extraction with toluene, the acetone was evaporated and the resulting toluene solution was brought to reflux for 1 h. The toluene was removed at reduced pressure; the residue was dissolved in THF and cooled to $0^{\circ} \mathrm{C}$. The addition of concentrated sulfuric acid ${ }^{19}$ gave a very smooth evolution of CO_{2}. Hydrolysis of the intermediate isocyanate 27 with aqueous HCl or $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, however, was very slow and usually resulted in formation of high levels of the urea. The primary amine 28 , isolated by neutralization and extraction, was converted directly to the benzenesulfonamide 29 with $\mathrm{PhSO}_{2} \mathrm{Cl}$ (Scheme I). The acid 26 was converted to the sulfonamide 29 , without isolation of any intermediate, in 80% overall yield.

Furthermore, the intermediate isocyanate 27 could also be treated with benzyl alcohol to afford the CBz-protected product 32 (below). This was useful for later modification

[^5]of the substituent at nitrogen. The primary amine 28 , obtained from hydrolysis of the isocyanate 27 , was also converted to the corresponding Mosher's amide ${ }^{20} 33$, although analysis of the diastereomers by chromatographic or spectroscopic methods was not possible. An alternative to the acyl azide procedure above was the (PhO$)_{2} \mathrm{PON}_{3}$ (DPPA) method of Yamada. ${ }^{21}$ Reaction of the acid 36 with DPPA in toluene, followed by benzyl alcohol at reflux, afforded the CBz amide 32 in moderate yields.

\[

$$
\begin{aligned}
& \text { 27, } \mathbf{R}_{1}, R_{2}=C=0 \\
& \text { 28, } R_{1}, R_{2}=H \\
& \text { 32, } R_{1}=H, R_{2}=C O_{2} B n \\
& \text { 33, } R_{1}=H, R_{2}=C O C\left(C F_{3}\right)(O M e) P h
\end{aligned}
$$
\]

The sulfonamide 29 was then debenzylated by catalytic reduction over Pd / C in ethanol solution containing a catalytic amount of $\mathrm{HCl} .{ }^{22}$ The same reduction in the absence of HCl was extremely slow and could not be driven to completion even with large loads of Pd/C. Nevertheless, the addition of aqueous HCl caused a rapid debenzylation. The material thus obtained could be crystallized from toluene to afford the alcohol 30 in 96% yield (Scheme I). At this point, formation of the Mosher's ester of the crude alcohol confirmed the enantio- and diastereomeric purity of the product from the Diels-Alder step. Simple recrystallization of the alcohol 30, however, resulted in a slight enantiomeric enrichment, ${ }^{23}$ as well as overall purification ($>98 \%$ ee and de).

Swern oxidation of the alcohol provided the aldehyde 31, which could be isolated and recrystallized or subjected directly to the Wittig reaction according to the procedure described by Narisada et al. ${ }^{1,13}$ Thus, formation of the dianion of the ylide 34, derived from (4-carboxybutyl)triphenylphosphonium bromide in THF at room temperature, followed by addition of the aldehyde at $-20^{\circ} \mathrm{C}(2$ h) then $23^{\circ} \mathrm{C}(1.5 \mathrm{~h})$, afforded (+)-S-145 in $75-80 \%$ yield (two steps, Scheme I). The E / Z ratio of this cis-olefination was $8: 92$, which compared favorably to that reported by Narisada et al., ${ }^{1 \mathrm{a}}$ and the undesired E isomer was easily removed by chromatography. Recrystallization from a mixture of toluene/hexanes afforded (+)-S-145 in 40% overall yield, containing $<1 \%(-)$-S-145 and $<1 \%$ of the corresponding exo-isomer (HPLC).

Conclusions

The asymmetric version of the Diels-Alder cycloaddition, employing a chiral oxazolidinone auxiliary and promoted by a Lewis acid, was extended to functionalized dienophiles. The auxiliary was easily installed onto the dienophile, easily removed in high yield under mild conditions by a nondestructive method, and recovered in a very practical manner. The recovered oxazolidinone auxiliary was furthermore recycled in the Diels-Alder reaction. A very high level of asymmetric induction was obtained with the phenylalaninol-derived oxazolidinone (X_{P}) from the Diels-Alder cycloaddition with $>98 \%$ pu-

[^6]rity. The utility of the technology was highlighted by an efficient synthesis of (+)-S-145, a potent TxA_{2} receptor antagonist. The asymmetric Diels-Alder reaction may be extended to a wide variety of $E-\alpha, \beta$-unsaturated imides to allow a versatile access to optically active norbornyl derivatives.

Experimental Section

General. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were obtained at 300 and 75.5 MHz , respectively. Melting points were determined on a Reic-hert-Jung hot stage microscope and are uncorrected. Diethylaluminum chloride was obtained from Aldrich. Solvents were purified according to standard procedures, ${ }^{24}$ and dicyclopentadiene was depolymerized according to the method of Moffett. ${ }^{25}$ Analytical HPLC was performed on a liquid chromatograph equipped with a detector. The specific conditions are reported for each assay below.

General Procedure for α, β-Unsaturated Imide Preparation. The imides were prepared according to the procedure noted in Table I. $\mathrm{Cl}: \mathrm{Cl}$ refers to formation of the imide from the appropriate acid chloride according to the general protocol described by Evans. ${ }^{8}$ Pv: Pv refers to formation of the imide via the pivaloyl mixed anhydride as described for imide 9, below. NBS: The bromocrotonimide 13 was prepared from crotonimide 1^{8} as described below.
General Procedure for Diels-Alder Cycloaddition. The α, β-unsaturated imide was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 0.5 M) and cooled to $-78^{\circ} \mathrm{C}$ under N_{2}. The order of addition was noted in Table I, and corresponds to the two different protocols. (1) C_{1} : Freshly distilled cyclopentadiene ($4-6$ equiv) was then added to the reaction mixture, followed by the dropwise addition of $\mathrm{Et}_{2} \mathrm{AlCl}$ (1.4 equiv) diluted with 3 volumes $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (2) E_{1} : $\mathrm{Et}_{2} \mathrm{AlCl}$ (1.4 equiv) diluted with 3 volumes $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise, and to the resulting yellow solution was then added cyclopentadiene (4-6 equiv). In both procedures, the reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ under N_{2} for 2 h and then transferred via cannula into a stirred solution of 1 N HCl at $0^{\circ} \mathrm{C}$. The layers were separated, and the organic phase was washed successively with $1 \mathrm{~N} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, saturated aqueous NaHCO_{3}, and brine and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). The filtrate was concentrated to dryness and passed through a plug of SiO_{2} to remove polymerized cyclopentadiene.
(4S)-3-((E)-2'-Butenoyl)-4-phenyl-2-oxazolidinone (3): 93%; mp $82-83^{\circ} \mathrm{C} ; R_{f} 0.69$ (silica gel, $2: 1$ hexanes-EtOAc); mass spectrum, $m / e 231\left(\mathrm{M}^{+}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2896,1780,1602,1385 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.93$ (dd, $3 \mathrm{H}, J=1.3,6.8 \mathrm{~Hz}$), 4.27 (dd, 1 H , $J=3.9,8.8 \mathrm{~Hz}), 4.70(\mathrm{t}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 5.48(\mathrm{dd}, 1 \mathrm{H}, J=3.9$, 8.8 Hz), $7.08\left(\mathrm{dq}, 1 \mathrm{H}, J=6.8,15.4 \mathrm{~Hz}\right.$), $7.24-7.40(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 18.4,57.6,69.8,121.6,125.8,128.5,129.0,139.1$, $147.1,153.6,164.3$; UV (EtOH) $\lambda_{\max }(\epsilon) 226$ (10500); $[\alpha]_{589}+154.3^{\circ}$ (c $1.01, \mathrm{MeOH}$).
Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{3}: \mathrm{C}, 67.52 ; \mathrm{H}, 5.67 ; \mathrm{N}, 6.06$. Found: C, 67.78; H, 5.73; N, 6.02 .
(4S)-3-((E)-2'-Hexenoyl)-4-(phenylmethyl)-2-oxazolidinone (5): $80 \% ; R_{f} 0.80$ (silica gel, $1: 1$ hexanes-EtOAc); mass spectrum, $m / e 273\left(\mathrm{M}^{+}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3020,1778,1682,1635,1356$ cm^{-1}; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}), 1.54(\mathrm{~m}, 2 \mathrm{H}), 2.28$ ($\mathrm{m}, 2 \mathrm{H}$), 2.77 (dd, $1 \mathrm{H}, J=9.6,13.4 \mathrm{~Hz}$), 3.32 (dd, $1 \mathrm{H}, J=3.2$, 13.4 Hz), $4.19(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.38(\mathrm{~m}, 7 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.7,21.3,34.7,37.9,55.3,66.1,120.5,127.3,128.9,129.4$, 135.4, 151.7, 153.4, 165.1; UV (EtOH) $\lambda_{\max }$ (ϵ) 229 (17900), 217 (15500); $[\alpha]_{589}-13.3^{\circ}$ (c $1.02, \mathrm{MeOH}$).
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$: C, 70.31; H, 7.01; N, 5.12. Found: C, 70.06; H, 6.94; N, 5.12.
(4S)-3-((E,E)-2', 4^{\prime}-Hexadienoyl)-4-(phenylmethyl)-2-oxazolidinone (7): $93 \% ; R_{f} 0.64$ (silica gel, $2: 1$ hexanes-EtOAc); mass spectrum, $m / e 272(\mathrm{M}+1)$; IR (CHCl_{3}) 1776, 1678, 1635, $1602,1380,1354 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.89(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}$), 2.81 (dd, $1 \mathrm{H}, J=9.6,13.8 \mathrm{~Hz}$), 3.33 (dd, $1 \mathrm{H}, J=3.0,13.8 \mathrm{~Hz}$), 4.18 (m, 2 H), 4.74 (m, 1 H), 6.19-6.41 (m, 2 H), 7.14-7.36 (m, $6 \mathrm{H}), 7.49(\mathrm{dd}, 1 \mathrm{H}, J=10.2,15.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 18.8$,

[^7]$37.9,55.3,66.0,117.9,127.2,128.9,129.4,130.4,135.4,141.2,146.9$, $153.4,165.5 ;$ UV (EtOH) $\lambda_{\max }(\epsilon) 278(25300), 206(11200) ;[\alpha]_{589}$ $+205.6^{\circ}$ (c 1.00 , MeOH).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}$: C, $70.83 ; \mathrm{H}, 6.32 ; \mathrm{N}, 5.16$. Found: C, 70.84; H, 6.06; N, 5.01.
(4S)-3-(E)-4'-(Benzyloxy)-2'-butenoyl)-4-(phenyl-methyl)-2-oxazolidinone (11): $87 \% ; R_{f} 0.70$ (silica gel, 2:1 hexanes-EtOAc); mass spectrum, $m / e 351\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 1780$, $1685,1354 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 2.81$ (dd, $1 \mathrm{H}, J=3.2,13.4 \mathrm{~Hz}$), 3.34 (dd, $1 \mathrm{H}, J=9.6,13.4 \mathrm{~Hz}$), 4.20 (m, 2 H), 4.26 (dd, $2 \mathrm{H}, J$ $=1.8,4.4 \mathrm{~Hz}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.38(\mathrm{~m}, 11 \mathrm{H})$, 7.57 (dt, $1 \mathrm{H}, J=1.8,15.5 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 37.9,55.3$, $66.2,69.0,72.8,120.6,127.4,127.8,127.9,128.5,129.0,129.5,135.3$, 137.7, 146.4, 153.3, 164.7; UV (EtOH) $\lambda_{\max }(\epsilon) 226$ (15000), 208 (22600); $[\alpha]_{689}+0.52^{\circ}$ (c 1.01, MeOH).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, 71.78; H, 6.02; $\mathrm{N}, 3.99$. Found: C, 71.49; H, 6.11; N, 4.20.
(4S)-3-((E)-4'-Bromo-2'-butenoyl)-4-(phenylmethyl)-2oxazolidinone (13). The imide $1(1.10 \mathrm{~g}, 4.5 \mathrm{mmol})$ was dissolved in $\mathrm{CCl}_{4}(20 \mathrm{~mL})$, and NBS ($958 \mathrm{mg}, 5.4 \mathrm{mmol}$) was added in one portion. The solution was brought to reflux under N_{2}, and a solution of $2,2^{\prime}$-azobis[2 -methylpropionitrile] ($736 \mathrm{mg}, 4.5 \mathrm{mmol}$) in $\mathrm{CCl}_{4}(10 \mathrm{~mL})$ was added via syringe pump over 1 h . When the addition was complete, the reaction mixture was cooled to room temperature, washed successively with aqueous $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The filtrate was concentrated to dryness and chromatographed over SiO_{2} with hexanes-EtOAc (3:1); $57 \% ; R_{f} 0.64$ (silica gel, $1: 1$ hexanes-EtOAc); mass spectrum, $m / e 323 / 325\left(\mathrm{M}^{+}\right) ;$IR $\left(\mathrm{CHCl}_{3}\right) 1780,1686,1637,1357 \mathrm{~cm}^{-1} ; \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 2.80(\mathrm{dd}, 1 \mathrm{H}, J=9.5,13.4 \mathrm{~Hz}), 3.34(\mathrm{dd}, 1 \mathrm{H}, J=2.9$, 13.4 Hz), 4.10 (dd, $2 \mathrm{H}, J=1.0,7.4 \mathrm{~Hz}$), 4.21 (m, 2 H), 4.73 (m, $1 \mathrm{H}), 7.18-7.49(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 29.4,37.7,55.2,66.2$, 123.2, 127.3, 128.9, 129.4, 135.1, 143.2, 153.2, 163.9; UV (EtOH) $\lambda_{\max }$ ($\epsilon 229(15400), 211(15900) ;[\alpha]_{589}+125.0^{\circ}$ (c $\left.1.01, \mathrm{MeOH}\right)$.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{5} \mathrm{Br}: \mathrm{C}, 51.87$; $\mathrm{H}, 4.35 ; \mathrm{N}, 4.32$. Found: C, 51.58; H, 4.38; N, 4.27.
(4S)-3-(E)-3'-(2-Furanyl)-2'-propenoyl)-4-(phenyl-methyl)-2-oxazolidinone (15): $69 \% ; R_{f} 0.63$ (silica gel, $2: 1$ hexanes-EtOAc); mass spectrum, $m / e 297\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 1777$, $1675,1618,1556,1353 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.84(\mathrm{dd}, 1 \mathrm{H}, J=$ $3.2,13.4 \mathrm{~Hz}$), 3.36 (dd, $1 \mathrm{H}, J=9.5,13.4 \mathrm{~Hz}$), 4.21 (m, 2 H), 4.81 $(\mathrm{m}, 1 \mathrm{H}), 6.50(\mathrm{dd}, 1 \mathrm{H}, J=1.8,3.4 \mathrm{~Hz}), 6.72(\mathrm{~d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz})$, $7.22-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.53(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 7.76$ $(\mathrm{d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 37.9,55.4,66.1,112.5$, $114.6,116.1,127.3,129.0,129.5,132.3,135.4,145.3,151.4,153.4$, 165.1; UV (EtOH) $\lambda_{\max }(\epsilon) 321(26500), 237(4960) ;[\alpha]_{589}+146.6$ (c $1.00, \mathrm{MeOH}$).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, $68.67 ; \mathrm{H}, 5.08 ; \mathrm{N}, 4.71$. Found: C, 68.52; H, 5.20; N, 4.74 .
(4S)-3-((E)-3'-(Ethoxycarbonyl)-2'-propenoyl)-4-(phe-nylmethyl)-2-oxazolidinone (17): $67 \% ; R_{f} 0.55$ (silica gel, $2: 1$ hexanes-EtOAc); mass spectrum, $m / e 303\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 1785$, $1723,1686,1633,1357 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.33(\mathrm{t}, 3 \mathrm{H}, J=7.1$ Hz), 2.83 (dd, $1 \mathrm{H}, J=9.4,13.4 \mathrm{~Hz}$), 3.33 (dd, $1 \mathrm{H}, J=3.2,13.4$ Hz), $4.27(\mathrm{~m}, 4 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.1,37.6,55.3,61.4,66.5,127.5,129.1,129.4,132.3$, $134.4,134.9,153.1,163.8,164.9$; UV (EtOH) $\lambda_{\max }(\epsilon) 211$ (20400); $[\alpha]_{589}+133.0^{\circ}$ (c $\left.1.00, \mathrm{MeOH}\right)$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5}$: $\mathrm{C}, 63.36 ; \mathrm{H}, 5.65 ; \mathrm{N}, 4.62$. Found: C, 63.15; H, $5.81 ; \mathrm{N}, 4.53$.
(4S)-3-(4'-Ox0-4'-((4'S)-2"-oxo-4"-(phenylmethyl)-3"-ox-azolidinyl)- $2^{\prime}(E)$-butenoyl)-4-(phenylmethyl)-2-oxazolidinone (19): $88 \% ; R_{f} 0.76$ (silica gel, $9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}$); mass spectrum, $m / e 435(\mathrm{M}+1)$; IR $\left(\mathrm{CHCl}_{3}\right) 1785,1680,1355 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 2.85$ (dd, $2 \mathrm{H}, J=9.6,13.4 \mathrm{~Hz}$), 3.39 (dd, 2 H , $J=2.9,13.4 \mathrm{~Hz}), 4.26(\mathrm{~m}, 4 \mathrm{H}), 4.77(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.38(\mathrm{~m}, 10$ H), 8.27 (s, 2 H); ${ }^{13} \mathrm{C}$ NMR (DMSO) $\delta 36.5,54.6,66.6,126.9,128.6$, $129.4,132.4,135.4,153.2,163.2$; UV (EtOH) $\lambda_{\max }$ ($\left.\epsilon\right) 234$ (16200), 208 (19600); $[\alpha]_{589}+40.2^{\circ}$ (c $0.99, \mathrm{MeOH}$).

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, $66.35 ; \mathrm{H}, 5.10 ; \mathrm{N}, 6.45$. Found: C, 66.08; H, $5.00 ; \mathrm{N}, 6.49$.

Adducts, $\boldsymbol{R}=\mathbf{C H}_{3}\left(\mathbf{4}, \mathbf{X}_{\mathrm{G}}\right): 93 \% ; R_{f} 0.80$ (silica gel, $1: 1$ hex-anes-EtOAc); mass spectrum, $m / e 297\left(\mathrm{M}^{+}\right) ;$IR $\left(\mathrm{CHCl}_{3}\right) 2980$, $1779,1693,1390,1320,1198 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.10(\mathrm{~m}, 6 \mathrm{H})$, $1.24(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~m}, 2 \mathrm{H}), 3.30$ $(\mathrm{m}, 2 \mathrm{H}), 3.60(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{dd}$,
$1 \mathrm{H}, J=3.0,6.0 \mathrm{~Hz}), 5.34(\mathrm{dd}, 1 \mathrm{H}, J=3.3,9.0 \mathrm{~Hz}) 5.42(\mathrm{dd}, 1$ $\mathrm{H}, J=4.2,9.0 \mathrm{~Hz}), 5.82(\mathrm{dd}, 1 \mathrm{H}, J=2.4,6.0 \mathrm{~Hz}), 6.15(\mathrm{dd}, 1$ $\mathrm{H}, J=3.6,6.0 \mathrm{~Hz}), 6.32(\mathrm{dd}, 1 \mathrm{H}, J=3.6,6.0 \mathrm{~Hz}), 7.21-7.45(\mathrm{~m}$, 10 H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 18.3,18.4,33.5,35.0,44.8,45.1,45.4$, $45.6,47.5,49.5,49.9,51.4,55.7,56.2,67.7,67.8,123.8,123.9,126.6$, $126.7,127.1,127.2,128.5,129.0,137.3,137.5,137.6,137.7,151.6$, $151.7,171.5,171.9$; UV (EtOH) $\lambda_{\text {max }}$ ($\epsilon 251$ (369).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{C}, 72.71 ; \mathrm{H}, 6.44 ; \mathrm{N}, 4.71$. Found: C, 73.06; H, 6.74; N, 4.51.
(4S)-3-(($\left.3^{\prime} R, 4^{\prime} R, 5^{\prime} S, 6^{\prime} S\right)-5^{\prime}$-Propylbicyclo[2.2.1]hepten-4'-yl)carbonyl)-4-(phenylmethyl)-2-oxazolidinone (6): ${ }^{26} 95 \%$; $R_{f} 0.77$ (silica gel, 2:1 hexanes-EtOAc); GC (DB1701 ($30 \mathrm{~m} \times 0.25$ $\mathrm{mm}) 200^{\circ} \mathrm{C}(1 \mathrm{~min}), 25^{\circ} \mathrm{C}$ per min, $260^{\circ} \mathrm{C}(15 \mathrm{~min})$, FID 300 ${ }^{\circ} \mathrm{C}$) assayed as the reduced derivative from exhaustive catalytic hydrogenation t_{R} minor endo $14.03 \mathrm{~min}, t_{\mathrm{R}}$ major endo 14.52 min , t_{R} minor exo $14.86 \mathrm{~min}, t_{\mathrm{R}}$ major exo 15.07 min ; mass spectrum, $m / e 340(\mathrm{M}+1)$; IR $\left(\mathrm{CHCl}_{3}\right) 2962,1778,1696,1351,1205 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 0.90(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.37(\mathrm{~m}, 5 \mathrm{H}), 1.69(\mathrm{~d}$, $1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{dd}, 1 \mathrm{H}, J$ $=3.2,13.2 \mathrm{~Hz}), 3.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.57(\mathrm{t}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 4.17$ (m, 2 H), 4.66 (m, 1 H), 5.85 (dd, $1 \mathrm{H}, J=2.7,5.4 \mathrm{~Hz}$), 6.41 (dd, $1 \mathrm{H}, J=3.2,5.4 \mathrm{~Hz}), 7.16-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.2$, $21.3,37.8,38.2,42.3,47.3,47.6,47.8,50.5,55.3,66.1,127.3,129.0$, 129.4, 130.9, 135.4, 139.9, 153.4, 174.3; UV (EtOH) $\lambda_{\max }(\epsilon) 258$ (374); $[\alpha]_{589}+206.0^{\circ}$ (c $1.00, \mathrm{MeOH}$).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3}$: $\mathrm{C}, 74.31 ; \mathrm{H}, 7.42 ; \mathrm{N}, 4.13$. Found: C, 74.31; H, 7.17; N, 4.09.
(4S)-3-(($\left.3^{\prime} R, 4^{\prime} R, 5^{\prime} S, 6^{\prime} S\right)-5^{\prime}$-(1 ($\left.E\right)$-Propenyl)bicyclo-[2.2.1]hepten-4'-yl) carbonyl)-4-(phenylmethyl)-2-oxazolidinone (8): ${ }^{26} 75 \% ; R_{f}$ (silica gel, 3:1 hexanes-EtOAc); GC (DB1701 $(30 \mathrm{~m} \times 0.25 \mathrm{~mm}) 200^{\circ} \mathrm{C}(1 \mathrm{~min}), 25^{\circ} \mathrm{C}$ per min, $260^{\circ} \mathrm{C}(15 \mathrm{~min})$, FID $300^{\circ} \mathrm{C}$) assayed as the reduced derivative from exhaustive catalytic hydrogenation t_{R} minor endo $14.03 \mathrm{~min}, t_{\mathrm{R}}$ major endo $14.52 \mathrm{~min}, t_{\mathrm{R}}$ minor exo $14.86 \mathrm{~min}, t_{\mathrm{R}}$ major exo 15.07 min ; mass spectrum, $m / e 338\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 1779,1696,1384,1231 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.48(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~d}, 3 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 2.68$ (m, 2 H), 3.21 (dd, $1 \mathrm{H}, J=3.1,13.2 \mathrm{~Hz}$), 3.42 (br s, 1 H), 3.74 (t, $1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 4.14(\mathrm{~m}, 3 \mathrm{H}), 4.64(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{~m}, 2 \mathrm{H})$, 5.86 (dd, $1 \mathrm{H}, J=2.7,5.5 \mathrm{~Hz}$), 6.42 (dd, $1 \mathrm{H}, J=3.1,5.5 \mathrm{~Hz}$), 7.18-7.34 (m, 5 H$) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 17.9,38.1,44.9,47.4,47.7$, $49.8,50.2,55.3,66.1,125.4,127.3,128.9,129.3,131.5,134.0,135.3$, $139.5,153.3,173.6 ; \mathrm{UV}(\mathrm{EtOH}) \lambda_{\max }(\epsilon) 263(303) ;[\alpha]_{589}+228.0^{\circ}$ (c $1.01, \mathrm{MeOH}$).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}: \mathrm{C}, 74.75 ; \mathrm{H}, 6.87 ; \mathrm{N}, 4.15$. Found: C, 74.47; H, 6.95; N, 3.95.
(4S)-3-(($\left.3^{\prime} R, 4^{\prime} R, 5^{\prime} S, 6^{\prime} S\right)-5^{\prime}$-((Benzyloxy)methyl)bicy-clo[2.2.1]hepten-4'-yl)carbonyl)-4-(phenylmethyl)-2-oxazolidinone (12): ${ }^{26} 86 \% ; R_{f} 0.77$ (silica gel, $1: 1$ hexanes-EtOAc); HPLC (Supelco LC-18-DB, $25 \times 0.46 \mathrm{~cm}, 60: 40$ acetonitrile-water, 2.0 mL per min) t_{R} minor endo $12.95 \mathrm{~min}, t_{\mathrm{R}}$ major endo 15.36 \min , t_{R} minor exo $16.85 \mathrm{~min}, t_{\mathrm{R}}$ major exo 18.22 min ; mass spectrum, $m / e 418\left(\mathrm{M}^{+}\right)$; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 1778,1698,1385 \mathrm{~cm}^{-1} ;$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{dd}$, $1 \mathrm{H}, J=9.8,13.2 \mathrm{~Hz}), 2.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.22(\mathrm{dd}, 1 \mathrm{H}, J=3.3$, 13.2 Hz), 3.39 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), 3.49 (d, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}$), 3.73 (dd, 1 $\mathrm{H}, J=3.5,4.4 \mathrm{~Hz}), 4.13(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~m}, 1 \mathrm{H})$, 5.92 (dd, $1 \mathrm{H}, J=2.7,5.5 \mathrm{~Hz}$), 6.43 (dd, $1 \mathrm{H}, J=3.3,5.5 \mathrm{~Hz}$), 7.20-7.41 (m, 10 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 38.1,42.9,45.3,47.0,47.5$, $47.7,55.4,66.1,72.9,73.5,127.3,127.5,127.6,128.4,128.9,129.4$, $131.7,135.4,138.5,139.5,153.4,173.7$; UV (EtOH) $\lambda_{\max }(\epsilon) 251$ (675); $[\alpha]_{589}+176.6^{\circ}$ (c $\left.1.01, \mathrm{MeOH}\right)$.

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{4}$: $\mathrm{C}, 74.80 ; \mathrm{H}, 6.52 ; \mathrm{N}, 3.35$. Found: C, 74.54; H, 6.58; N, 3.25.
(4S)-3-(((3'R,4'R,5'S,6'S)-5'-(Bromomethyl)bicyclo-[2.2.1]hepten-4'-yl) carbonyl)-4-(phenylmethyl)-2-oxazolidinone (14): ${ }^{26} 91 \% ; R_{f} 0.64$ (silica gel, $2: 1$ hexanes-EtOAc); HPLC (Supelco LC-18-DB, $25 \times 0.46 \mathrm{~cm}, 45: 55 \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{CN}, 1.0 \mathrm{~mL}$ per min) t_{R} minor endo $16.96 \mathrm{~min}, t_{\mathrm{R}}$ major endo $18.46 \mathrm{~min}, t_{\mathrm{R}}$ minor exo $21.20 \mathrm{~min}, t_{\mathrm{R}}$ major exo 23.58 min ; mass spectrum, m / e $390\left(\mathrm{M}^{+}\right) ;$IR $\left(\mathrm{CHCl}_{3}\right) 1779,1699 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.57(\mathrm{~m}$, $1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dd}, 1 \mathrm{H}, J=9.8,13.2$ Hz), 2.85 (br s, 1 H), 3.21 (dd, $1 \mathrm{H}, J=3.3,13.2 \mathrm{~Hz}$), $3.37(\mathrm{t}, 1$

[^8]$\mathrm{H}, J=9.6 \mathrm{~Hz}$), $3.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.49(\mathrm{dd}, 1 \mathrm{H}, J=7.1,9.7 \mathrm{~Hz}$), 3.76 (dd, $1 \mathrm{H}, J=3.6,4.4 \mathrm{~Hz}$), 4.18 (m, 2 H), 4.68 (m, 1 H), 5.93 (dd, $1 \mathrm{H}, J=2.8,5.5 \mathrm{~Hz}$), 6.43 (dd, $1 \mathrm{H}, J=3.2,5.5 \mathrm{~Hz}$), $7.19-7.38$ ($\mathrm{m}, 5 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 37.3,38.1,46.0,47.3,47.4,47.5,50.5$, $55.4,66.3,127.4,129.0,129.4,132.2,135.3,139.2,153.4,172.9$; UV (EtOH) $\lambda_{\text {max }}$ ($\epsilon 258$ (269); $[\alpha]_{589}+127.1^{\circ}$ (c $\left.1.02, \mathrm{MeOH}\right)$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{Br}$: C, 58.47 ; $\mathrm{H}, 5.16 ; \mathrm{N}, 3.58$. Found: C, 58.77; H, 5.28; N, 3.55.
(4S)-3-(($\left.3^{\prime} R, 4^{\prime} R, 5^{\prime} S, 6^{\prime} S\right)-5^{\prime}-(2-F u r a n y l) b i c y c l o[2.2 .1]-$ hepten-4'-yl)carbonyl)-4-(phenylmethyl)-2-oxazolidinone (16): ${ }^{28} 81 \% ; R_{f} 0.70$ (silica gel, $1: 1$ hexanes-EtOAc); HPLC (Zorbax $\mathrm{NH}_{2}, 25 \times 0.46 \mathrm{~cm}, 99.0: 1.0$ hexanes- n-PrOH, 1.5 mL per $\min) t_{\mathrm{R}}$ minor endo $7.50 \mathrm{~min}, t_{\mathrm{R}}$ major endo $8.68 \mathrm{~min}, t_{\mathrm{R}}$ minor exo $9.13 \mathrm{~min}, t_{\mathrm{R}}$ major exo 10.74 min ; mass spectrum, $m / e 364$ ($\mathrm{M}+1$); $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 1780,1696,1386 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.58$ ($\mathrm{m}, 1 \mathrm{H}$), 1.94 (m, 1 H), 2.72 (dd, $1 \mathrm{H}, J=9.8,13.2 \mathrm{~Hz}$), 3.06 (br $\mathrm{s}, 1 \mathrm{H}), 3.23(\mathrm{dd}, 1 \mathrm{H}, J=3.3,13.2 \mathrm{~Hz}$), $3.35(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}$), 3.54 (br s, 1 H$), 4.17$ (m, 2 H), 4.22 (m, 1 H$), 4.68$ (m, 1 H$), 5.96$ (dd, $1 \mathrm{H}, J=2.7,5.5 \mathrm{~Hz}$), 6.08 (d, $1 \mathrm{H}, J=3.1 \mathrm{~Hz}$), 6.28 (dd, 1 $\mathrm{H}, J=2.0,2.8 \mathrm{~Hz}$), 6.50 (dd, $1 \mathrm{H}, J=3.2,5.5 \mathrm{~Hz}$), $7.21-7.37$ (m, 6 H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 38.2,40.9,47.2,48.7,49.1,49.2,55.3$, $66.3,105.0,110.1,127.4,129.0,129.4,132.1,135.3,139.3,141.4$, 153.3, 157.4, 173.2; UV (EtOH) $\lambda_{\text {max }}(\epsilon) 208(22100) ;[\alpha]_{599}+242.2^{\circ}$ (c $1.02, \mathrm{MeOH}$).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{4}: \mathrm{C}, 72.71 ; \mathrm{H}, 5.82 ; \mathrm{N}, 3.85$. Found: C, 72.64; H, 5.74; N, 3.79.
(4S)-3-(($\left.3^{\prime} R, 4^{\prime} R, 5^{\prime} S, 6^{\prime} S\right)$-5'-(Ethoxycarbonyl)bicyclo-[2.2.1]hepten-4'-yl)carbonyl)-4-(phenylmethyl)-2-oxazolidinone (18):28 $89 \% ; R_{f} 0.77$ (silica gel, $1: 1$ hexanes-EtOAc); HPLC (Supelco LC-18-DB, $25 \times 0.46 \mathrm{~cm}, 50: 50$ acetonitrile-water, 2.0 mL per min) t_{R} minor endo $17.80 \mathrm{~min}, t_{\mathrm{R}}$ major endo 19.87 min , t_{R} minor exo $21.70 \mathrm{~min}, t_{\mathrm{R}}$ major exo 24.06 min ; mass spectrum, $m / e 270(\mathrm{M}+1)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1781,1723,1697,1386 \mathrm{~cm}^{-1} ; \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 1.25(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.51(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H})$, 2.67 (dd, $1 \mathrm{H}, J=9.9,13.2 \mathrm{~Hz}$), 2.92 (dd, $1 \mathrm{H}, J=1.5,4.7 \mathrm{~Hz}$), 3.19 (m, 1 H), 3.23 (br s, 1 H), 3.52 (br s, 1 H), 4.16 (m, 4 H), 4.35 $(\mathrm{m}, 1 \mathrm{H}), 4.66(\mathrm{~m}, 1 \mathrm{H}), 5.95(\mathrm{dd}, 1 \mathrm{H}, J=2.8,5.5 \mathrm{~Hz}), 6.40(\mathrm{dd}$, $1 \mathrm{H}, J=3.2,5.5 \mathrm{~Hz}$, $7.17-7.35(\mathrm{~m}, 5 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 14.3$, $38.2,46.6,46.9,47.8,48.0,48.6,55.3,60.8,66.3,127.4,129.0,129.4$, 133.1, 135.3, 138.6, 153.1, 172.8, 174.2; UV (EtOH) $\lambda_{\text {max }}$ (ϵ) 251 (262); $[\alpha]_{\text {b99 }}+191.9^{\circ}$ (с 1.00, MeOH).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5}$: $\mathrm{C}, 68.28 ; \mathrm{H}, 6.28 ; \mathrm{N}, 3.79$. Found: C, 68.16; H, 6.16; N, 3.75.
$3,3^{\prime} \cdot\left(\left(3^{\prime \prime} R, 4^{\prime \prime} R, 5^{\prime \prime} S, 6^{\prime \prime} S\right)\right.$-Bicyclo[2.2.1]heptene- $4^{\prime \prime}, 5^{\prime \prime}$ -diyldicarbonyl)bis(4(S)-(phenylmethyl)-2-oxazolidinone) (20): ${ }^{26} 84 \%$; mp $184-185{ }^{\circ} \mathrm{C}$; $R_{f} 0.82$ (silica gel, $1: 1$ hexanesEtOAc); HPLC (Zorbax $\mathrm{NH}_{2}, 25 \times 0.46 \mathrm{~cm}, 95.0: 1.0$ hexanes-n$\mathrm{PrOH}, 1.5 \mathrm{~mL}$ per min) t_{R} minor endo $1.36 \mathrm{~min}, t_{\mathrm{R}}$ major endo 2.98 min ; mass spectrum, $m / e 501(\mathrm{M}+1)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1782,1692$, $1388 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.51(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dd}$, $1 \mathrm{H}, J=9.9,13.3 \mathrm{~Hz}$), 2.83 (dd, $1 \mathrm{H}, J=9.4,13.3 \mathrm{~Hz}$), $3.14(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.83(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz})$, 4.08-4.29(m, 4 H$), 4.57(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{~m}, 2 \mathrm{H}), 6.12(\mathrm{dd}, 1 \mathrm{H}$, $J=2.7,5.4 \mathrm{~Hz}$), 6.46 (dd, $1 \mathrm{H}, J=3.2,5.4 \mathrm{~Hz}$), 7.19-7.42 (m, 10 H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 38.0,38.1,46.8,47.2,47.4,49.3,55.4,55.5$, $66.3,66.4,127.3,127.4,128.9,129.0,129.4,129.5,134.7,135.2,135.3$, 137.9, 153.4, 172.9, 173.7; UV (EtOH) $\lambda_{\max }(\epsilon) 204(21000) ;[\alpha]_{589}$ $+399.5^{\circ}$ (c $1.00, \mathrm{MeOH}$).

Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 69.59; $\mathrm{H}, 5.64 ; \mathrm{N}, 5.60$. Found: C, 69.45; H, 5.74; N, 5.51 .

1,3-O-Benzylidene-1,3-propanediol (22a). 1,3-Propanediol (21) $(76.5 \mathrm{~g}, 1.0 \mathrm{~mol})$ was dissolved in toluene (250 mL) and treated with benzaldehyde ($107.1 \mathrm{~g}, 1 \mathrm{~mol}$) and a catalytic amount of p-toluenesulfonic acid monohydrate (300 mg). The resulting solution was stirred at reflux under a Dean-Stark trap until the theoretical amount of water (18 mL) had separated (2.5 h). The reaction mixture was cooled to room temperature. Although the crude acetal was used directly in the subsequent reduction, the product had the following characteristics: NMR (CDCl_{3}) $\delta 1.45$ ($\mathrm{m}, 1 \mathrm{H}$), $2.25(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{dt}, 2 \mathrm{H}, J=3.0,12.8 \mathrm{~Hz}), 4.29(\mathrm{~m}$, 2 H) , 5.51 ($\mathrm{s}, 1 \mathrm{H}$), $7.32-7.56(\mathrm{~m}, 5 \mathrm{H}) ; R_{f} 0.73$ (silica gel, $2: 1$ hexanes-EtOAc).
3-(Benzyloxy)-1-propanol (22). The toluene solution of the benzylidene acetal was cooled to $0^{\circ} \mathrm{C}$ under nitrogen. Diisobutylaluminum hydride ($775 \mathrm{~mL}, 1.6 \mathrm{M}$ in toluene) was then added dropwise with vigorous stirring at a rate to maintain the
temperature at $0-5^{\circ} \mathrm{C}$. After the addition was complete, the reaction mixture was allowed to stir at room temperature overnight. A solution of $\mathrm{MeOH}(140 \mathrm{~mL}$) in toluene (240 mL) was then added carefully with cooling at a rate to keep the temperature below $40^{\circ} \mathrm{C}$ (caution: exothermic with vigorous gas evolution!). After all of the methanol solution was added, the reaction mixture became thick and gelatinous. Water (70 mL) was then carefully added (more gas evolution), and the resulting slurry was stirred under the mixture became granular (1 h). The precipitate was filtered through Celite and washed with toluene, and the filtrate was concentrated to an oil. Distillation of the crude oil afforded 3-(benzyloxy)-1-propanol (147.9 g) in 89% yield as a colorless liquid: bp $135-139{ }^{\circ} \mathrm{C}(2 \mathrm{mmHg})$ (lit. ${ }^{14} \mathrm{bp} 110^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$ and $110^{\circ} \mathrm{C}(0.5 \mathrm{~mm})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.87(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, exch $\mathrm{D}_{2} \mathrm{O}$), $3.67(\mathrm{t}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}$), $3.78(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H})$, 7.26 (m, 5 H); $R_{f} 0.23$ (silica gel, $2: 1$ hexanes-EtOAc).

Methyl 5-(Benzyloxy)-2(E)-pentenoate (23). Oxalyl chloride ($102.6 \mathrm{~mL}, 1.18 \mathrm{~mol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ in a $5-\mathrm{L}$ 3 -neck round-bottom flask equipped with a dropping funnel, mechanical stirrer, N_{2} inlet, and thermocouple. The reaction mixture was cooled in an acetone/dry ice bath to an internal temperature of approximately $-70^{\circ} \mathrm{C}$. A solution of dimethyl sulfoxide ($115.6 \mathrm{~mL}, 1.63 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was then added dropwise with stirring. When the addition was complete, the mixture was stirred at this temperature for an additional 15 min , followed by the dropwise addition of the alcohol $2(150.4 \mathrm{~g}, 0.91$ mol) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. The resulting mixture was stirred at $-65^{\circ} \mathrm{C}$ to $-70^{\circ} \mathrm{C}$ for 45 min . Triethylamine (353 mL , 2.53 mol) was then added, and the reaction mixture became very thick with precipitate. After another 10 min , a solution of the methyl (triphenylphosphoranylidene)acetate ($319.8 \mathrm{~g}, 0.96 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mathrm{~mL})$ was added. The reaction mixture was stirred at this temperature for 15 min , the cooling bath was removed, and stirring was continued at room temperature for $4 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 L) was added, and the mixture was washed successively with water ($2 \times 1 \mathrm{~L}$), $\mathrm{NaHCO}_{3}(1 \mathrm{~L})$, and brine (1 L) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The dessicant was filtered, and the filtrate was concentrated to dryness in vacuo. The residue was triturated with hexanes (1 L) and stirred at room temperature for 2 h . The precipitated $\mathrm{Ph}_{3} \mathrm{P}=0$ was filtered and washed with hexanes (2 $\times 150 \mathrm{~mL}$), and the filtrate was concentrated to a dark amber oil. The amber oil was distilled to afford the α, β-unsaturated ester 23 as a light yellow oil, $181.2 \mathrm{~g}(90.4 \%)$: bp $140^{\circ} \mathrm{C}(0.9 \mathrm{mmHg})$; $R_{f} 0.66$ (silica gel, 2:1 hexanes-EtOAc); mass spectrum, $m / e 220$ $\left(\mathrm{M}^{+}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3013,1715 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.48(\mathrm{~m}, 2 \mathrm{H})$, $3.56(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 5.89(\mathrm{dt}, 1$ $\mathrm{H}, J=1.3,15.6 \mathrm{~Hz}), 6.89(\mathrm{dt}, 1 \mathrm{H}, J=7.0,15.6 \mathrm{~Hz}), 7.31(\mathrm{~m}, 5$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 32.5,51.3,68.1,72.9,122.3,127.5,128.2$, $131.9,137.9,145.8,166.7$; UV (EtOH) $\lambda_{\text {max }}$ ($\epsilon 246$ (9110), 206 (13400).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$: $\mathrm{C}, 70.88 ; \mathrm{H}, 7.32$. Found: $\mathrm{C}, 70.83$; H, 7.51.

5-(Benzyloxy)-2(E)-pentenoic Acid (24). The ester 23 (199 $\mathrm{g}, 0.91 \mathrm{~mol})$ was dissolved in THF (400 mL) and treated with 1 $\mathrm{N} \mathrm{NaOH}(1.36 \mathrm{~L})$. The heterogeneous mixture was stirred vigorously at room temperature for 5 h . The reaction mixture was diluted with ether (1 L), and the phases were separated. The aqueous phase was washed further with ether ($2 \times 400 \mathrm{~mL}$); 6 N HCl was added dropwise to the aqueous phase to pH 3 , followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 400 \mathrm{~mL})$, and the organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The dessicant was filtered, and the filtrate was concentrated to a pale yellow liquid: $R_{f} 0.05$ (silica gel, $2: 1$ hexanes-EtOAc); mass spectrum, $m / e 206\left(\mathrm{M}^{+}\right)$; IR (CHCl_{3}) 3031 , $2865,1699,1656,1421,1224 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 2.52(\mathrm{~m}, 2 \mathrm{H})$, 3.58 (t, $2 \mathrm{H}, J=6.6 \mathrm{~Hz}$), 4.52 (s, 2 H), $5.90(\mathrm{~m}, 1 \mathrm{H}), 7.10$ (dt, $1 \mathrm{H}, J=7.2,15.6 \mathrm{~Hz}$), $7.31(\mathrm{~m}, 5 \mathrm{H}), 11.58$ (br s, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 31.9,67.3,72.3,121.6,127.0,127.1,127.7$, 137.2, 147.8, 171.1; UV (EtOH) $\lambda_{\max }$ ($\epsilon 257$ (440), 204 (19 100).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 69.89; $\mathrm{H}, 6.84$. Found: C, 69.80 ; H, 6.85 .
(4S)-3-((E)-5'-(Benzyloxy)-2'-pentenoyl)-4-(phenyl-methyl)-2-oxazolidinone (9). A flask as described for 23 was charged with the acid $24(140.7 \mathrm{~g}, 0.68 \mathrm{~mol})$, dry THF (2 L), and triethylamine ($144 \mathrm{~mL}, 1.03 \mathrm{~mol}$). The resulting solution was cooled to $-50^{\circ} \mathrm{C}$ under a nitrogen atmosphere. Freshly distilled pivaloyl chloride ($84.0 \mathrm{~mL}, 0.68 \mathrm{~mol}$) was then added dropwise
over 30 min . When the addition was complete, the reaction mixture was allowed to warm to $-30^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$, and this temperature was maintained while the subsequent deprotonation was conducted. In a separate 3-L flask was dissolved the (S)-4-benzyl-2-oxazolidinone ($110 \mathrm{~g}, 0.62 \mathrm{~mol}$) in anhydrous THF (1.2 L) under nitrogen. The flask was cooled in a CO_{2} / acetone bath, and $n-\mathrm{BuLi}(400 \mathrm{~mL}, 0.64 \mathrm{~mol})$ was added dropwise. When the addition of was complete, the homogeneous solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The solution of the lithium oxazolidinone ($\mathrm{X}_{\mathrm{P}} \mathrm{Li}$) was then transferred to the heterogeneous suspension of the mixed anhydride via cannula at $-78^{\circ} \mathrm{C}$ with vigorous stirring. After stirring at this temperature for 30 min , the reaction mixture was slowly brought to room temperature with continued stirring for 6 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (700 mL) was added, and most of the THF was removed in vacuo. The mixture was extracted with $\mathrm{EtOAc}(1.5 \mathrm{~L})$, and the organic phase was washed successively with saturated aqueous $\mathrm{NaHCO}_{3}(3 \times 500 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL})$, and brine (500 mL) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The dessicant was removed by filtration, and the filtrate was concentrated to an orange oil, 219.8 g . The crude material was used directly in the next step without purification, but an analytical sample was prepared by chromatography over SiO_{2} with hexanes- EtOAc (4:1): $R_{f} 0.52$ (silica gel, $2: 1$ hexanes-EtOAc); mass spectrum, m/e 365 $\left(\mathrm{M}^{+}\right) ;$IR $\left(\mathrm{CHCl}_{3}\right) 1778,1683,1637,1356 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 2.56 (br q, $2 \mathrm{H}, J=6.0 \mathrm{~Hz}$), $2.95(\mathrm{dd}, 1 \mathrm{H}, J=7.8,13.5 \mathrm{~Hz}), 3.07$ (dd, $1 \mathrm{H}, J=3.0,13.5 \mathrm{~Hz}$), $3.60(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}$), 4.19 (dd, $1 \mathrm{H}, J=2.4,8.4 \mathrm{~Hz}), 4.35(\mathrm{t}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.72$ $(\mathrm{m}, 1 \mathrm{H}), 7.05-7.24(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 32.5,36.7,54.5$, $66.1,68.0,71.9,121.7,126.9,127.4,127.5,128.2,128.6,129.5,135.7$, 138.4, 147.5, 153.3, 164.1; UV (EtOH) $\lambda_{\text {max }}(\epsilon) 228$ (15600), 209 (21 100) ; $[\alpha]_{589}+44.1^{\circ}$ (c 1.01, MeOH).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}: \mathrm{C}, 72.31 ; \mathrm{H}, 6.34 ; \mathrm{N}, 3.83$. Found: C, 72.55 ; H, 6.59 ; N, 3.83 .
(4S)-3-(((3'R,4'R,5'S,6'S)-5'-(2-(Benzyloxy)ethyl)bicy-clo[2.2.1]hepten-4'-yl)carbonyl)-4-(phenylmethyl)-2-oxazolidinone (10). ${ }^{26}$ A flask as described for 23 was charged with the imide $9(350.8 \mathrm{~g}, 0.96 \mathrm{~mol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.35 \mathrm{~L})$ and cooled to -78 ${ }^{\circ} \mathrm{C}$ under N_{2}. The addition funnel was charged with $\mathrm{Et}_{2} \mathrm{AlCl}(170.0$ $\mathrm{mL}, 1.34 \mathrm{~mol})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. This solution was then added dropwise to the imide at a rate to maintain the temperature below $-70^{\circ} \mathrm{C}(30 \mathrm{~min})$. After the $\mathrm{Et}_{2} \mathrm{AlCl}$ was added, freshly distilled cyclopentadiene ($240.0 \mathrm{~mL}, 3.0 \mathrm{~mol}$) was added dropwise at a rate to maintain the temperature below $-75^{\circ} \mathrm{C}(15$ min). Stirring was continued at $-78^{\circ} \mathrm{C}$ for 5 h , whereupon chromatographic analysis indicated complete conversion to the adduct. The reaction mixture at $-78^{\circ} \mathrm{C}$ was transferred via cannula (12 gauge, Teflon) into a rapidly stirring solution of 1 NHCl at $0^{\circ} \mathrm{C}$ (40 min ; note: strong gas evolution!). After the quench was complete, the layers were separated, and the organic phase was washed successively with $1 \mathrm{~N} \mathrm{HCl}(1.4 \mathrm{~L}), \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~L})$, saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~L})$, and brine (1 L) and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Removal of the volatiles afforded a light brown oil, 377 g . The crude material was used directly in the next step without purification, but an analytical sample was prepared by chromatography over SiO_{2} with hexanes-EtOAc (4:1): $R_{f} 0.66$ (silica gel, $2: 1$ hexanes-EtOAc); HPLC (Supelco LC-18-DB, 25 $\times 0.46 \mathrm{~cm}, 60: 40$ acetonitrile-water, 2.0 mL per $\min) t_{\mathrm{R}}$ minor endo $18.10 \mathrm{~min}, t_{\mathrm{R}}$ major endo $20.05 \mathrm{~min}, t_{\mathrm{R}}$ minor exo 22.64 min , t_{R} major exo 25.15 min ; mass spectrum, $m / e 431\left(\mathrm{M}^{+}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $3019,1778,1696,1385,1226 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.30(\mathrm{~m}, 1 \mathrm{H})$, $1.71(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{q}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{dd}$, $1 \mathrm{H}, J=9.6,13.2 \mathrm{~Hz}$), $2.68(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, 1 \mathrm{H}, J=3.6,13.5$ $\mathrm{Hz}), 3.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{dd}, 1 \mathrm{H}$, $J=2.9,9.0 \mathrm{~Hz}), 4.43(\mathrm{~m}, 3 \mathrm{H}), 5.84(\mathrm{dd}, 1 \mathrm{H}, J=2.7,5.6 \mathrm{~Hz})$, $6.41(\mathrm{dd}, 1 \mathrm{H}, J=3.2,5.6 \mathrm{~Hz}), 7.16-7.64(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 35.3,37.9,40.2,47.1,47.5,48.3,50.5,54.9,65.6,70.3$, $72.6,126.9,127.0,127.1,128.1,128.6,129.1,130.8,135.2,138.5$, $139.3,153.0,173.8 ; \mathrm{UV}(\mathrm{EtOH}) \lambda_{\max }(\epsilon) 257(480) ;[\alpha]_{589}+180.6^{\circ}$ (c $1.01, \mathrm{MeOH}$).

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{4}: \mathrm{C}, 75.15 ; \mathrm{H}, 6.77 ; \mathrm{N}, 3.25$. Found: C, 75.19; H, 6.95; N, 3.26.
(4S)-3-(($\left.3^{\prime} R, 4^{\prime} R, 5^{\prime} S, 6^{\prime} S\right)-5^{\prime} \cdot(2$-(Benzyloxy)ethyl)bicy-clo[2.2.1]heptan-4'-yl)carbonyl)-4-(phenylmethyl)-2-oxazolidinone (25). ${ }^{26}$ The adduct $10(137 \mathrm{~g}, 0.32 \mathrm{~mol})$ was dissolved in EtOAc (750 mL) and transferred to a 2-L Parr bottle containing $5 \% \mathrm{Pt} / \mathrm{C}(25 \mathrm{~g})$ under N_{2}. The vessel was degassed (evacuated $/ \mathrm{H}_{2}$
purge, $5 \times$). The reduction was accomplished by agitation under 36 psi of H_{2} at room temperature for 2 h . The catalyst was removed by filtration through Celite and washed with EtOAc, and the filtrate was concentrated to dryness to afford 139 g . The crude material was used directly in the next step without purification, but an analytical sample was prepared by chromatography over SiO_{2} with hexanes-EtOAc (4:1): $R_{f} 0.67$ (silica gel, 2:1 hexanes-EtOAc); mass spectrum, $m / e 433\left(\mathrm{M}^{+}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $2957,1778,1692,1237,1198 \mathrm{~cm}^{-1} ;$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.21-1.46(\mathrm{~m}$, $4 \mathrm{H}), 1.51-1.76$ (m, 4 H$), 2.07(\mathrm{~m}, 1 \mathrm{H}), 2.24$ (m, 1 H$), 2.63$ (dd, $1 \mathrm{H}, J=9.8,13.2 \mathrm{~Hz}$), 2.78 (br s, 1 H), $3.24(\mathrm{dd}, 1 \mathrm{H}, J=3.0$, 13.2 Hz), $3.40-3.56(\mathrm{~m}, 3 \mathrm{H}), 3.74(\mathrm{t}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}$), 3.98 (dd, $1 \mathrm{H}, J=3.0,9.8 \mathrm{~Hz}), 4.42(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.35(\mathrm{~m}$, $10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 23.5,29.8,35.9,38.3,40.9,41.7,42.7$, $53.4,54.4,55.1,65.7,70.1,72.8,127.1,127.2,127.3,128.3,128.9$, $129.3,135.5,138.7,153.0,174.0 ; \mathrm{UV}(\mathrm{EtOH}) \lambda_{\max }(\epsilon) 205$ (20300); $[\alpha]_{589}+117.3^{\circ}$ (c $\left.1.01, \mathrm{MeOH}\right)$

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{4}$: $\mathrm{C}, 74.80 ; \mathrm{H}, 7.21 ; \mathrm{N}, 3.23$. Found: C, 74.53 ; H, 6.98 ; N, 3.26 .
($3^{\prime} R, 4^{\prime} R, 5^{\prime} S, 6^{\prime} S$)-5-(2-(Benzyloxy)ethyl)-4'-carboxybicyclo[2.2.1]heptane (26). ${ }^{26}$ The imide 25 ($139 \mathrm{~g}, 0.32 \mathrm{~mol}$) was placed in a 3-L 3-neck round-bottom flask equipped with a mechanical stirrer, thermocouple probe, and a side arm left open to the atmosphere. The imide was dissolved by the addition THF (1.4 L, reagent grade), followed by water (650 mL , deionized). The flask was cooled in an ice bath so that the internal temperature was $3 \pm 2^{\circ} \mathrm{C} ; 30 \% \mathrm{H}_{2} \mathrm{O}_{2}(205 \mathrm{~mL}, 2.0 \mathrm{~mol})$ was added to the mixture. Solid $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(42.0 \mathrm{~g}, 1.0 \mathrm{~mol})$ was then added slowly with vigorous stirring (important), causing the internal temperature to rise $3^{\circ} \mathrm{C}$. The reaction mixture was stirred at 330 rpm at $3 \pm 2^{\circ} \mathrm{C}$ for $10 \mathrm{~h} . \mathrm{NaHSO}_{3}(170 \mathrm{~g})$ was then added portionwise at a rate to maintain the internal temperature below $20^{\circ} \mathrm{C}$. When the addition was complete, the mixture was stirred for 30 min with cooling (ice bath). The reaction mixture was partitioned between $1 \mathrm{~N} \mathrm{NaOH}(1 \mathrm{~L})$ and $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~L})$. The organic phase was extracted with $1 \mathrm{~N} \mathrm{NaOH}(3 \times 500 \mathrm{~mL})$, and the combined aqueous phase was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 500 \mathrm{~mL})$. The pH of the aqueous phase was adjusted to 3 with 6 N HCl and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The filtrate was concentrated to a colorless oil, $80.6 \mathrm{~g}(87.9 \%)$, and was chromatographically homogeneous. An analytical sample was prepared by chromatography over SiO_{2} with hexanes-EtOAc (2:1): $R_{f} 0.41$ (silica gel, $2: 1$ hexanes-EtOAc); mass spectrum, m / e $275(\mathrm{M}+1)$; IR $\left(\mathrm{CHCl}_{3}\right) 3017,1702,1455,1308,1237,1096 \mathrm{~cm}^{-1}$; $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.26(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 3 \mathrm{H}), 1.65$ $(\mathrm{m}, 1 \mathrm{H}), 1.92(\mathrm{br} \mathrm{q}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{t}, 1$ $\mathrm{H}, J=4.2 \mathrm{~Hz}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.46(\mathrm{~s}$, $2 \mathrm{H}), 7.22-7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.3,29.5,36.2,37.5$, $40.9,41.8,42.2,54.2,69.3,73.2,127.6,127.8,128.5,138.5,180.8 ;$ UV (EtOH) $\lambda_{\max }(\epsilon) 206(6910) ;[\alpha]_{689}+19.0^{\circ}$ (c $\left.1.01, \mathrm{MeOH}\right)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$: $\mathrm{C}, 74.42 ; \mathrm{H}, 8.08$. Found; $\mathrm{C}, 74.52$; H, 8.11.

The $\mathrm{Et}_{2} \mathrm{O}$ extracts from above were combined and concentrated to dryness. Recrystallization from toluene afforded the (S)-4-benzyl-2-oxazolidinone ($53.3 \mathrm{~g}, 90.0 \%$) which had perfect spectral (NMR, α_{D}) and chromatographic (TLC, HPLC) data and was recycled.
($3^{\prime} R, 4^{\prime} R, 5^{\prime} S, 6^{\prime} S$)-5-(2-(Benzyloxy)ethyl) $\mathbf{4}^{\prime}$-benzenesulfonamidobicyclo[2.2.1] heptane (29). ${ }^{26}$ The acid 26 (80.5 $\mathrm{g}, 0.293 \mathrm{~mol}$) was dissolved in acetone (400 mL) and placed in a 1-L flask as described for 23. Triethylamine ($45.0 \mathrm{~mL}, 0.323$ mol) was added, and the flask was cooled to $0^{\circ} \mathrm{C}$. Ethyl chloroformate ($30.9 \mathrm{~mL}, 0.323 \mathrm{~mol}$) was added dropwise, causing the internal temperature to rise to $17{ }^{\circ} \mathrm{C}$ with a concomitant precipitation of $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$. Water (40 mL) was added, and the resulting solution was stirred with ice cooling for 1 h . TLC analysis showed complete conversion to a very nonpolar material. A solution of $\mathrm{NaN}_{3}(30.5 \mathrm{~g}, 0.47 \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{~mL})$ was then added dropwise with continued stirring for 1 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(400 \mathrm{~mL}$) and extracted with toluene ($3 \times$ 300 mL). The combined organic phase was washed with brine $(300 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to ca. half volume in vacuo (to remove the acetone). The toluene solution was then slowly brought to reflux, with a very vigorous evolution of N_{2} noted. After 1.5 h , the yellow solution was cooled to room temperature and concentrated to dryness. The oily yellow residue
was dissolved in THF (300 mL) and cooled to $0^{\circ} \mathrm{C}$ under N_{2}. Concentrated $\mathrm{H}_{2} \mathrm{SO}_{2}$ (30 mL) was added dropwise, resulting in the evolution of CO_{2} gas. After 30 min , the aqueous solution was partitioned between $\mathrm{E}_{2} \mathrm{O}(300 \mathrm{~mL})$ and $2 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL})$, and the layers were separated. The organic phase was extracted with $2 \mathrm{~N} \mathrm{HCl}(2 \times 100 \mathrm{~mL})$, and the combined aqueous phase was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The pH of the aqueous phase was adjusted to 10 by the addition of 6 N NaOH . Extraction of the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{~mL})$, which was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated to dryness, afforded the crude amine $\left(61.0 \mathrm{~g}, 84 \%\right.$). The crude amine 28 was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (300 $\mathrm{mL})$, treated with $\mathrm{Et}_{3} \mathrm{~N}(104.0 \mathrm{~mL}, 0.75 \mathrm{~mol})$, and cooled to $0^{\circ} \mathrm{C}$ under N_{2}. Benzenesulfonyl chloride ($34.9 \mathrm{~mL}, 0.27 \mathrm{~mol}$) was then added dropwise with stirring. After 30 min at $0^{\circ} \mathrm{C}$ and 1.5 h at room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(200 \mathrm{~mL})$, washed successively with $1 \mathrm{~N} \mathrm{HCl}(2 \times 300 \mathrm{~mL}), 2 \mathrm{~N}$ $\mathrm{NaOH}(300 \mathrm{~mL}), 5 \% \mathrm{NH}_{4} \mathrm{OH}(2 \times 300 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$, and brine (300 mL), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The dessicant was filtered, and the filtrate was concentrated to dryness to afford the crude sulfonamide $29,98.0 \mathrm{~g}$, as a heavy colorless oil. The product was chromatographed over $\mathrm{SiO}_{2}(1.5 \mathrm{~kg})$, eluting first with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1000 \mathrm{~mL})$ and then with $4 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2000 \mathrm{~mL})$. After removal of the volatiles in vacuo and thorough drying under high vacuum, the material obtained in this manner weighed 90.9 g (80.5% from the acid 26), as a clear, colorless oil, which crystallized on standing: $\mathrm{mp} 62-64^{\circ} \mathrm{C} ; R_{f} 0.55$ (silica gel, $2: 1$ hexanes-EtOAc); mass spectrum, $m / e 385\left(\mathrm{M}^{+}\right)$; IR (CHCl_{3}) 3029, 2876, 1448, 1165 cm^{-1}; NMR (CDCl_{3}) $\delta 1.09-1.39(\mathrm{~m}, 6 \mathrm{H}), 1.55(\mathrm{~m}, 3 \mathrm{H}), 1.87(\mathrm{~m}$, $1 \mathrm{H}), 2.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~m}, 2 \mathrm{H})$, $4.78\left(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}\right.$, exch $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.31(\mathrm{~m}, 5 \mathrm{H}), 7.48(\mathrm{~m}, 3 \mathrm{H})$, $7.85(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 20.7,30.1,34.7,35.2,41.0,41.1$, 47.1, 62.0, 67.9, 72.9, 127.2, 127.6, 127.7, 128.4, 129.0, 132.5, 138.4, 140.7; UV (EtOH) $\lambda_{\text {max }}(\epsilon) 258$ (607); $[\alpha]_{589}+0.39^{\circ}$ (c 1.01, MeOH).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 68.54 ; \mathrm{H}, 7.06 ; \mathrm{N}, 3.63$. Found: C, 68.42; H, 7.11; N, 3.70 .
($3^{\prime} R, 4^{\prime} R, 5^{\prime} S, 6^{\prime} S$)-5'-(2-Hydroxyethyl)-4'-benzenesulfonamidobicyclo[2.2.1] heptane (30). ${ }^{26}$ The benzyl ether 29 (63.0 g, 0.16 mol) was dissolved in $95 \% \mathrm{EtOH}(300 \mathrm{~mL})$ and transferred to a Parr bottle containing 10% Pd on $\mathrm{C}(10.0 \mathrm{~g})$ under $\mathrm{N}_{2}, 6 \mathrm{~N}$ $\mathrm{HCl}(9.0 \mathrm{~mL})$ was added, and the mixture was shaken under 40-45 psi of H_{2} over 18 h . The catalyst was removed by filtration over Celite and washed with $95 \% \mathrm{EtOH}$, and the filtrate was concentrated to dryness in vacuo. The residue was azeotroped from toluene ($3 \times 300 \mathrm{~mL}$) in vacuo. Recrystallization from hot toluene (250 mL) afforded the alcohol 30 as elongated plates, 40.7 g (84.4%): mp 120-122 ${ }^{\circ} \mathrm{C}$; $R_{f} 0.34$ (silica gel, 1:1 hexanes-EtOAc); mass spectrum, $m / e 295\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3030,2958,1448,1322$, $1164 \mathrm{~cm}^{-1} ;$ NMR (CDCl_{3}) $\delta 1.19$ (m, 4 H), 1.36 (m, 2 H), 1.54 (m , $3 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.06(\mathrm{~m}, 1$ H), 3.53 (m, 2 H), 5.76 (d, $1 \mathrm{H}, J=6.6 \mathrm{~Hz}$, exch $\mathrm{D}_{2} \mathrm{O}$), 7.55 (m, $3 \mathrm{H}), 7.93(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 20.6,30.0,35.2,37.4,40.8$, $41.0,46.2,60.2,61.9,127.2,129.0,132.6,140.6$; UV (EtOH) $\lambda_{\max }$ (ϵ) 223 (6680); $[\alpha]_{589}+26.7^{\circ}$ (c $1.01, \mathrm{MeOH}$).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 60.99 ; \mathrm{H}, 7.17 ; \mathrm{N}, 4.74$. Found: C, 61.23; H, 7.32; N, 4.71 .
($3^{\prime} R, 4^{\prime} R, 5^{\prime} S, 6^{\prime} S$)-5'-(Formylmethyl)-4'-benzenesulfonamidobicyclo[2.2.1]heptane (31). ${ }^{26}$ A 1-L flask was equipped as described for 23 . Freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added, followed by the addition of oxalyl chloride ($8.9 \mathrm{~mL}, 0.102 \mathrm{~mol}$). The solution was cooled to $-78^{\circ} \mathrm{C}$ under N_{2}, and then a solution of DMSO ($12.0 \mathrm{~mL}, 0.169 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , and then a solution of the alcohol $30(25.0 \mathrm{~g}, 0.0847 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200$ mL) was added dropwise. The reaction mixture was stirred vigorously at $-78^{\circ} \mathrm{C}$ for 45 min . Triethylamine ($59.0 \mathrm{~mL}, 0.423$ mol) was added dropwise, and the mixture was stirred for an additional 10 min at $-78^{\circ} \mathrm{C}$, followed by removal of the cooling bath with continued stirring. When the internal temperature had reached $0^{\circ} \mathrm{C}$, the reaction mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}$ (400 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL). The layers were separated, and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(400 \mathrm{~mL})$ and brine (400 $\mathrm{mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Filtration and removal of the volatiles
afforded the aldehyde 31 as an pale yellow oil, which was used directly in the subsequent Wittig reaction without purification. The aldehyde could be crystallized from toluene, however, to afford the title compound as a colorless, crystalline solid: mp $100-101^{\circ} \mathrm{C} ; R_{f} 066$ (silica gel, 1:1 hexanes-EtOAc); mass spectrum, $m / e 294(\mathrm{M}+1)$; IR $\left(\mathrm{CHCl}_{3}\right) 2959,1720,1448,1341,1224,1158$ cm^{-1}; NMR (CDCl_{3}) $\delta 1.16(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H})$, $2.26(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{dd}, 2 \mathrm{H}, J=7.2,9.6 \mathrm{~Hz}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 5.62$ $(\mathrm{m}, 1 \mathrm{H}), 7.46-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.88(\mathrm{~m}, 2 \mathrm{H}), 9.56(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{3} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.6,29.8,35.1,41.2,44.0,46.0,49.3,62.2,127.3,129.0$, 132.7, 140.1, 201.7; UV (EtOH) $\lambda_{\max }$ ($\epsilon 223$ (6540); $[\alpha]_{589}+31.8^{\circ}$ (c $1.01, \mathrm{CHCl}_{3}$).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 61.41 ; \mathrm{H}, 6.53 ; \mathrm{N}, 4.77$. Found: C, 61.68; H, 6.30; N, 4.87 .
(+)-(5Z)-7-(3-endo-((Phenylsulfonyl)amino)bicyclo-[2.2.1]hept-2-exo-yl)heptenoic Acid ((+)-S-145). (4Carboxybuty) triphenylphosphonium bromide ($112.67 \mathrm{~g}, 0.254$ mol) was suspended in freshly distilled THF (590 mL) in a $1-\mathrm{L}$ flask as described for 23 . Potassium tert-butoxide ($59.4 \mathrm{~g}, 0.513$ $\mathrm{mol}, 97 \%$) was added portionwise with rapid stirring under N_{2}. The internal temperature rose to $39^{\circ} \mathrm{C}$, and the resulting bright orange suspension was stirred at room temperature for 1.25 h . The reaction mixture was then cooled to $-20^{\circ} \mathrm{C}$ (internal temperature), and a solution of the aldehyde (above) in THF (100 mL) was added dropwise over 30 min . The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2 h and at room temperature for 1.5 h . The reaction mixture was quenched with $1 \mathrm{~N} \mathrm{HCl}(250 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 350 \mathrm{~mL}$). The combined organic phase was washed with brine $(400 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The dessicant was filtered, and the filtrate was concentrated to dryness. The residue was partitioned between $1 \mathrm{~N} \mathrm{NaOH}(250 \mathrm{~mL})$ and toluene (250 mL). The organic phase was extracted with 1 N $\mathrm{NaOH}(100 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The combined aqueous phase was washed with toluene ($2 \times 250 \mathrm{~mL}$), and the pH was adjusted to 4 with 3 N HCl , followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 200 \mathrm{~mL}$). The organic layer was washed with brine $(200 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to 59.9 g . Flash chromatography over $\mathrm{SiO}_{2}(1.7 \mathrm{~kg})$ with hexanes-EtOAc, 4:1 (2 $\mathrm{L}) \rightarrow 2: 1(2 \mathrm{~L}) \rightarrow 1: 1$ (2 L), afforded chromatographically pure (+)-S-145, $21.5 \mathrm{~g}(67.3 \%$, two steps). Recrystallization from 5.6 volumes of toluene-hexane ($3.6: 1$) afforded colorless, crystalline (+)-S-145: mp 60-62 ${ }^{\circ} \mathrm{C}$; $R_{f} 0.48$ (silica gel, 1:1 PhH-EtOAc); HPLC (Supelco LC-18-DB, $25 \times 0.46 \mathrm{~cm}, 300: 200: 350: 1$ aceto-nitrile-methanol-water-acetic acid, 2.0 mL per $\min , 240 \mathrm{~nm}) t_{\mathrm{R}}$ desired endo $9.24 \mathrm{~min}, t_{\mathrm{R}}$ undesired exo 11.26 min ; HPLC (Chiracel OD, $25 \times 0.46 \mathrm{~cm}, 9: 1$ hexane-2-propanol, 1.5 mL per $\min , 240 \mathrm{~nm}$) as methyl ester t_{R} undesired enantiomer 10.28 min , t_{R} desired enantiomer 12.70 min ; mass spectrum $\mathrm{m} / \mathrm{e} 378(\mathrm{M}+$ 1); $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3376,2958,1709,1321,1159 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 0.98(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~m}, 1 \mathrm{H})$, 1.44-1.69 (m, 4 H), 1.73-2.00 (m, 5 H), 2.15 (br s, 1 H), 2.34 (t, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{~d}, 1 \mathrm{H}, J=$ 6.6 Hz , exch $\mathrm{D}_{2} \mathrm{O}$), $7.53(\mathrm{~m}, 3 \mathrm{H}), 7.91(\mathrm{~m}, 2 \mathrm{H}), 9.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$ exch $\mathrm{D}_{2} \mathrm{O}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.8,24.5,26.4,29.9,32.1,33.3$, $35.0,40.3,41.2,50.7,61.6,127.2,128.5,129.0,129.8,132.5,140.8$, 179.2; UV (EtOH) $\lambda_{\max }(\epsilon) 225(5270) ;[\alpha]_{599}+28.7^{\circ}(c 1.00, \mathrm{MeOH})$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 63.63 ; \mathrm{H}, 7.21 ; \mathrm{N}, 3.71$. Found: C, 63.63; H, 6.97; N, 3.95 .

The material prepared in this manner was identical in every respect with a sample provided to us by Shionogi.

Acknowledgment. The author gratefully acknowledges the exchange of samples and information during the collaboration with Drs. Iwasaki, Ohtani, and Narisada (Shionogi \& Co.), and helpful discussions and encouragement from Professor David Evans (Harvard University), Dr. Charles Barnett (Lilly), and Dr. David Robertson (Lilly). The author would also like to acknowledge the technical assistance from Mr. Joseph Gray with some experiments and Ms. Dawn Harris and Mr. David Robbins with some analytical procedures.

[^0]: (1) (a) Narisada, M.; Ohtani, M.; Watanabe, F.; Uchida, K.; Arita, H.; Doteuchi, M.; Hanasaki, K.; Kakushi, H.; Otani, K.; Hara, S. J. Med. Chem. 1988, 31, 1847 and references cited therein. (b) Das, J.; Vu, T.; Harris, D.; Ogletree, M. J. Med. Chem. 1988, 31, 930. (c) Hall, S.; Han, W.-C.; Harris, D.; Hedberg, A.; Ogletree, M. J. Med. Chem. 1989, 32, 974.
 (2) (a) Kawada, K.; Tsushima, T. Heterocycles 1989, 28, 573. (b) Hamanaka, N.; Seko, T.; Miyazaki, T.; Naka, M.; Furuta, K.; Yamamoto, H. Tetrahedron Lett. 1989, 30, 2399.

[^1]: (3) Helmchen, G.; Karge, R.; Weetman, J. In Modern Synthetic Methods; Scheffold, R., Ed.; Springer-Verlag: Berlin, 1986; Vol. 4, p 262 , and referenced therein.
 (4) (a) Houk, K.; Strozier, R. J. Am. Chem. Soc. 1973, 95, 4094. (b) Loncharich, R.; Schwartz, T.; Houk, K. J. Am. Chem. Soc. 1987, $109,14$. (c) Guner, O.; Ottenbrite, R.; Shillady, D.; Alston, P. J. Org. Chem. 1987, 53, 2428. (d) Maruoka, K.; Nonoshita, K.; Yamamoto, H. Synth. Commun. 1988, 18, 1453.
 (5) (a) Oppolzer, W.; Chapuis, C.; Dupuis, D.; Guo, M. Helv. Chim. Acta 1985, 68, 2100. (b) Hartmann, H.; Hady, A.; Sartor, K.; Weetman, J.; Helmchen, G. Angew. Chem., Int. Ed. Engl. 1987, 26, 1143. (c) Evans, D.; Chapman, K.; Bisaha, J. J. Am. Chem. Soc. 1984, 106, 4261. (d) Furuta, K.; Iwanaga, K.; Yamamoto, H. Tetrahedron Lett. 1986, 27, 4507. (e) Waldmann, H. J. Org. Chem. 1988, 53, 6133. (f) Suzuki, H.; Mochizuki, K.; Hattori, T.; Takahashi, N.; Tajima, O.; Takiguchi, T. Bull. Chem. Soc. Jpn. 1988, 61, 1999. (g) Kishikawa, K.; Yamamoto, M.; Kohmoto, S.; Yamada, K. J. Org. Chem. 1989, 54, 2428.
 (6) (a) Kelly, T.; Whiting, A.; Chandrakumar, N. J. Am. Chem. Soc. 1986, 108, 3510. (b) Narasaka, K.; Inoue, M.; Okada, N. Chem. Lett. 1986, 1109. (c) Chapuis, C.; Jurczak, J. Helv. Chim. Acta. 1987, 70, 436.
 (7) (a) Narasaka, K.; Inoue, M.; Yamada, T. Chem. Lett. 1986, 1967. (b) Maruoka, K.; Itoh, T.; Shirasaka, T.; Yamamoto, H. J. Am. Chem. Soc. 1988, 110, 310 . (c) Furuta, K.; Shimizu, S.; Miwa, Y.; Yamamoto, H. J. Org. Chem. 1989, 54, 1481. (d) Narasaka, K.; Iwasawa, N.; Inoue, M.; Yamada, T.; Nakashima, M.; Sugimori, J. J. Am. Chem. Soc. 1989, 111, 5340 . (e) Corey, E.; Imwinkelried, R.; Pikul, S.; Xiang, Y. J. Am. Chem. Soc. 1989, 111, 5493 .
 (8) Evans, D.; Chapman, K.; Bisaha, J. J. Am. Chem. Soc. 1988, 110, 1238.
 (9) (a) Gage, J.; Evans, D. Org. Synth. 1989, 68, 77. (b) Pridgen, L.; Prol, J. J. Org. Chem. 1989, 54, 3231. (c) Wuts, P.; Pruitt, L. Synthesis 1989, 622.

[^2]: (10) Evans, D.; Britton, T.; Ellman, J. Tetrahedron Lett. 1987, 28 , 6141.
 (11) Evans, D.; Chapman, K.; Hung, D.; Kawaguchi, A. Angew. Chem., Int. Ed. Engl. 1987, 26, 1184.

[^3]: (12) Kunz, H.; Pees, K. J. J. Chem. Soc., Perkin Trans. 1 1989, 1168.
 (13) Corey, E.; Weinshenker, N.; Schaaf, T.; Huber, W.J. Am. Chem. Soc. 1969, 91, 5675.

[^4]: (14) Takano, S.; Akiyama, M.; Sato, S.; Ogasawara, K. Chem. Lett. 1983, 1593.
 (15) Ireland, R.; Norbeck, D. J. Org. Chem. 1985, 50, 2198.
 (16) Isler, O.; Gutmann, H.; Montavon, M.; Rüegg, R.; Ryser, G.; Zeller, P. Helv. Chim. Acta 1957, 40, 1242.
 (17) It has previously been demonstrated that the Z olefin undergoes rapid isomerization to the E olefin in the presence of $\mathrm{Et}_{2} \mathrm{AlCl}$, faster than cycloaddition with cyclopentadiene. See ref 8.

[^5]: (18) (a) Weinstock, J. J. Org. Chem. 1961, 26, 3511. (b) Kaiser, C.; Weinstock, J. Organic Synthesis; Wiley: New York, 1988; Collect. Vol. VI, p 910.
 (19) (a) Satchell, D.; Satchell, R. Chem. Soc. Rev. 1975, 4, 231. (b) Rigaudy, J.; Lytwyn, E.; Wallach, P.; Cuong, N. Tetrahedron Lett. 1980, 21, 3367.

[^6]: (20) Dale, J.; Dull, D.; Mosher, H. J. Org. Chem. 1969, 34, 2543.
 (21) (a) Yamada, S.; Kota, N.; Shiori, T. J. Am. Chem. Soc. 1975, 97, 7174. (b) Ninomiya, K.; Shiori, T.; Yamada, S. Chem. Pharm. Bull. Jpn. 1974, 22, 1398. (c) Ninomiya, K.; Shiori, T.; Yamada, S. Tetrahedron 1974, 30, 2151.
 (22) Rylander, P. In Catalytic Hydrogenation in Organic Syntheses; Academic Press: New York, 1979; p 271.
 (23) Jacques, J.; Collet, A.; Wilen, S. in Enantiomers, Racemates, and Resolutions; John Wiley \& Sons, Inc.: New York, 1981.

[^7]: (24) Riddick, J.; Bunger, W.; Sakano, T. In Techniques of Chemistry, Vol. II, Organic Solvents; John Wiley \& Sons, Inc., 1986.
 (25) Moffett, R. Organic Syntheses; Wiley: New York, 1963; Collect. Vol. IV, p 238.

[^8]: (26) The numbering for the bicyclo[2.2.1]heptane ring system is that used in ref 8. It differs from the standard numbering for the bicyclo[2.2.1]heptane ring system.

